Cho tam giác ABC có \(AD\perp BC;BE\perp AC;CF\perp AB\).Từ E kẻ \(EI\perp AB;EK\perp AD;EM\perp FC\).Chứng minh rằng I,K,M thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#\(N\)
*Sửa đề: `CD \bot AB` chứ không phải `AD, BE` cắt đoạn `CD` tại `O` chứ không phải đoạn `BD.`
`a,` Vì Tam giác `ABC` có `AB = AC ->`\(\widehat{B}=\widehat{C}\)
Xét Tam giác `BDC` và Tam giác `CEB` có:
`BC` chung
\(\widehat{B}=\widehat{C}\) `(CMT)`
\(\widehat{BDC}=\widehat{CEB}=90^0\)
`=>` Tam giác `BDC =` Tam giác `CEB (ch-gn)`
`-> BD = CE (2` cạnh tương ứng `)`
`b,` Xét Tam giác `ADC` và Tam giác `AEB` có:
`AB = AC (g``t)`
\(\widehat{A}\) chung
\(\widehat{AEB}=\widehat{ADC}=90^0\)
`=>` Tam giác `ADC =` Tam giác `AEB (ch-gn)`
`=>` \(\widehat{ABE}=\widehat{ACD}\) `( 2` góc tương ứng `)`
Xét Tam giác `OBD` và Tam giác `OCE` có:
\(\widehat{ODB}=\widehat{OEC}=90^0\)
`BD = CE (CMT)`
\(\widehat{DBO}=\widehat{ECO}\) `(CMT)`
`=>` Tam giác `OBD =` Tam giác `OCE (g-c-g)`
`c,` *Mình sẽ bổ sung sau nha bạn .-. câu này mình bị bí á .-.
câu c bn chỉ cần cm \(\Delta ADE\) cân tại \(A\Rightarrow\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\) (1)
và \(\Delta ABC\) cân tại \(A\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) suy ra góc ADE=góc ABC
mà 2 góc này ở vị trí đồng vị
=>đpcm
A B H C D \(\Delta ABC\)Và \(\Delta CDA\)Có
AD=BC(gt)
AC: Cạnh chung
AB=CD)gt)
=> \(\Delta ABC=\Delta CDA\left(C-C-C\right)\)
=>\(\widehat{BAC}=\widehat{DCA}\);\(\widehat{ACB}=\widehat{CAD}\)
Mà các góc này ở vị trí SLT
=>AB//CD(dpcm)
BC//AD mà \(AH\perp BC\)=>\(AH\perp AD\)(Dpcm)
Cậu tự vẽ hình nha!!!
a) Xét \(\Delta AED\)và \(\DeltaÀD\)có:
\(\widehat{AED}=\widehat{AFD}=90^o\)
\(ADchung\)
\(\widehat{EAD}=\widehat{FAD}\)(AD là tia phân giác của \(\widehat{BAC)}\)
\(\Rightarrow\Delta EAD=\Delta FAD(c.h-g.n)\)
\(\Rightarrow AE=AF\)( 2 cạnh tương ứng)
\(\Rightarrow\Delta AEF\)cân
\(\Rightarrow\widehat{AEF}=\widehat{AFE}=\frac{180^O-\widehat{EAF}}{2}(1)\)
Mà \(\Delta ABC\)cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}(2)\)
Từ (1) và (2) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\)
Mà \(\widehat{ACB}=30^o\Rightarrow\widehat{AFE}=30^o\)
Ta có:
\(\widehat{AFE}+\widehat{EFD}=90^ohay30^o+\widehat{EFD}=90^o\Rightarrow\widehat{EFD}=60^o(3)\)
Mà \(\Delta EAD=\Delta FAD(c.h-g.n)\)
\(\Rightarrow ED=FD\)( 2 cạnh tương ứng) (4)
Từ (3) và (4) \(\Rightarrow\Delta EFD\)đều (đpcm)
Vậy \(\Delta EFD\)đều
b) Xét \(\Delta BED\)và \(\Delta CFD\)có:
\(\widehat{BED}=\widehat{CFD=90^o}\)
\(DE=DF(cmt)\)
\(\widehat{EBD}=\widehat{FCD}=30^o\)
\(\Rightarrow\Delta BED=\Delta CFD(c.h-g.n)\)
Vậy \(\Delta BED=\Delta CFD\)
c) Xét \(\Delta ABC\)có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)
\(hay\widehat{BAC}+30^o+30^o=180^o\)
\(\Rightarrow\widehat{BAC}=120^o\)
Vì AD là tia phân giác của \(\widehat{BAC}\)nên:
\(\widehat{BAD}=\widehat{CAD}=\frac{\widehat{BAC}}{2}=\frac{120^o}{2}=60^o\)
Vì BM // AB nên: \(\widehat{MBA}=\widehat{BAD}\)(2 góc so le trong); \(\widehat{BMA}=\widehat{DAC}\)(2 góc đồng vị)
Mà \(\hept{\begin{cases}\widehat{BAD}=60^o\\\widehat{DAC}=60^o\end{cases}\Rightarrow\hept{\begin{cases}\widehat{MBA}=60^o_{(1)}\\\widehat{BMA}=60^o_{(2)}\end{cases}}}\)
Từ (1) và (2) \(\Rightarrow\Delta ABM\)đều (đpcm)
Vậy \(\Delta ABM\)đều