K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

\(27+\left(220-6x\right).3=615\)

\(\rightarrow\left(220-6x\right).3=615-27=588\)

\(\rightarrow220-6x=588:3=196\)

\(\rightarrow6x=220-196=24\)

\(\rightarrow x=24:6=4\)

27 tháng 7 2019

\(315-\left(x-3\right).7=210\)

\(\Rightarrow\left(x-3\right).7=315-210=105\)

\(\Rightarrow x-3=105:7=15\)

\(\Rightarrow x=15+3=18\)

22 tháng 9 2018

* Trả lời:

\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)

\(\Leftrightarrow-3+6x-4-12x=-5x+5\)

\(\Leftrightarrow6x-12x+5x=3+4+5\)

\(\Leftrightarrow x=12\)

\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)

\(\Leftrightarrow6x-15-6+24x=-3x+7\)

\(\Leftrightarrow6x+24x+3x=15+6+7\)

\(\Leftrightarrow33x=28\)

\(\Leftrightarrow x=\dfrac{28}{33}\)

\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)

\(\Leftrightarrow1-3x-6x+12=-4x-5\)

\(\Leftrightarrow-3x-6x+4x=-1-12-5\)

\(\Leftrightarrow-5x=-18\)

\(\Leftrightarrow x=\dfrac{18}{5}\)

\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)

\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)

\(\Leftrightarrow-x-5x=-7\)

\(\Leftrightarrow-6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\)

\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)

\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)

\(\Leftrightarrow-15x+3x=4\)

\(\Leftrightarrow-12x=4\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

31 tháng 7 2023

p) \(\left(9-x\right)\left(x^2+2x-3\right)\)

\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)

\(=9x^2+18x-27-x^3-2x^2+3x\)

\(=-x^3+7x^2+21x-27\)

n) \(\left(-x+3\right)\left(x^2+x+1\right)\)

\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=-x^3-x^2-x+3x^2+3x+3\)

\(=-x^2+2x^2+2x+3\)

o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)

\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)

\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)

\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)

q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)

\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)

\(=6x^3-12x^2-18x+x^2-2x-3\)

\(=6x^3-11x^2-20x-3\)

r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)

\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)

\(=-2x^3-6x^2+2x-x^2-3x+1\)

\(=-2x^3-7x^2-x+1\)

u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)

\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)

\(=-2x^3+2x^2+12x+3x^2-3x-18\)

\(=-2x^3+5x^2+9x-18\)

s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)

\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)

\(=-4x^3-12x^2+8x+5x^2+15x-10\)

\(=-4x^3-7x^2+23x-10\)

v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)

\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)

\(=-x^2-3+2x^4+6x+18-12x^3\)

\(=2x^4-12x^3-x^2+6x+15\)

p: (-x+9)(x^2+2x-3)

=-x^3-2x^2+3x+9x^2+18x-27

=-x^3+7x^2+21x-27

n: (-x+3)(x^2+x+1)

=-x^3-x^2-x+3x^2+3x+3

=-x^3+2x^2+2x+3

o: (-6x+1/2)(x^2-4x+2)

=-6x^3+24x^2-12x+1/2x^2-2x+1

=-64x^3+49/2x^2-14x+1

q: (6x+1)(x^2-2x-3)

=6x^3-12x^2-18x+x^2-2x-3

=6x^3-11x^2-20x-3

r: (2x+1)(-x^2-3x+1)

=-2x^3-6x^2+2x-x^2-3x+1

=-2x^3-7x^2-x+1

u: =-2x^3+2x^2+12x+3x^2-3x-18

=-2x^3+5x^2+9x-18

s: =-4x^3-12x^2+8x+5x^2+15x-10

=-4x^3-7x^2+23x-10

10 tháng 8 2023

\(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)\cdot6^x\cdot6^{x+2}=6^{15}\)

\(\Rightarrow\dfrac{1}{6}\cdot6^{x+2+x}=6^{15}\)

\(\Rightarrow6^{2x+3}=6^{15}:\dfrac{1}{6}\)

\(\Rightarrow6^{2x+2}=6^{16}\)

\(\Rightarrow2x+2=16\)

\(\Rightarrow2x=16-2\)

\(\Rightarrow2x=14\)

\(\Rightarrow x=7\)

10 tháng 8 2023

1/6 . 6x . 6x.62=615

             6x+2.6=615

             62x     = 615/6

             62x     =614

         =>2x      = 14

        =>x         = 14:2

        =>x         = 7

29 tháng 11 2022

1: \(=3x^2-6x-5x+5x^2-8x^2+24=-11x+24\)

2: \(=8x^2+12x-10x-15-4\left(2x^2-x+4x-2\right)+10x+7\)

\(=8x^2+12x-8-8x^2+4x-16x+8\)

\(=0\)

3: \(=\left(6x+1-6x+1\right)^2=4\)

5: \(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)

\(=3x^3+6x-3x^3+3x=9x\)

9 tháng 10 2019

a) ( 6x + 1 )2 + ( 6x - 1 )2 - 2( 1 + 6x )( 6x - 1 )

=  ( 6x + 1 )- 2( 1 + 6x )( 6x - 1 ) + ( 6x - 1 )2

= ( 6x + 1 - 6x + 1 )2 = 2= 4

b: =x-2

d: \(=-x^3+\dfrac{3}{2}-2x\)

1. Giải phương trình:1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)5/ \(x^2-\left(m+1\right)x+2m-6=0\)6/ \(615+x^2=2^y\)2.a, Cho các số dương a,b thoả mãn \(a+b=2ab\).Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).Tính GTNN và GTLN của biểu thức \(P=x+y\).3. Cho hàm...
Đọc tiếp

1. Giải phương trình:

1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)

3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)

4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

5/ \(x^2-\left(m+1\right)x+2m-6=0\)

6/ \(615+x^2=2^y\)

2.

a, Cho các số dương a,b thoả mãn \(a+b=2ab\).

Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).

b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).

Tính GTNN và GTLN của biểu thức \(P=x+y\).

3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).

4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).

0
26 tháng 6 2021

`a)5y(2y-1)-(3y+2)(3-3y)`

`=10y^2-5y+(3y+2)(3y-3)`

`=10y^2-5y+9y^2-9y+6y-6`

`=19y^2-8y-6`

`b)(6x+1)^2-2(6x+1)(6x-1)+(6x-1)^2`

`=(6x+1-6x+1)^2`

`=2^2=4`

`c)(2x+3)^2-2(2x+3)(x-20+(x-2)^2`

`=(2x+3-x+2)^2`

`=(x+5)^2`

`=x^2+10x+25`