K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

Ta có:

\(\left(n+2\right)^2-\left(n-2\right)^2\)

\(=\left[\left(n+2\right)+\left(n-2\right)\right]\left[\left(n+2\right)-\left(n-2\right)\right]\)

\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)

\(=2n\cdot4\)

\(=8n\)

Vì \(8n⋮8\)

\(\Rightarrow\left(n+2\right)^2-\left(n-2\right)^2⋮8\)

Vậy...

26 tháng 12 2017

Áp dụng hằng đẳng thức đáng nhớ ta có :

  ( n+2 )^2 - ( n - 2 )^2 = ( n^2 + 4n + 2^2 ) - ( n^2 - 4n + 2^2 )

= n^2 + 4n + 4 - n^2 + 4n - 4 = 8n

=> Chia hết cho 8

NV
20 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)

6 tháng 8 2021

3n+2 -2n+2 +3n -2n

=3.32 -2n .22 +3n -22

=3n(9+)-2n(4-1)

Vì 3n .10 ⋮10

=> 3n .10- 2n .3⋮10

=>3n +2 -2n+2 +3n -2n ⋮10

4 tháng 11 2021

sai

trước 2^n là dấu trừ => trong ngoặc đổi dấu thành 2^n(4+1)

=>2^n-1.10 chia hết cho 10

 

DD
17 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(5\left(n^2+n+2\right)⋮5\)

26 tháng 12 2017

https://goo.gl/BjYiDy

26 tháng 12 2017

sửa đề : \(\left(2n-1\right)^3-\left(2n-1\right)\)

đề đó mình nghĩ vậy

21 tháng 10 2019

n2+n+2 = n(n+1)+2

n sẽ có dạng n=3k; n=3k+1; n=3k+2 (k\(\in Z\))

 n=3k => n(n+1) = 3k(3k+1) chia hết cho 3 nên 3k(3k+1)+2 không chia hết cho 3

n=3k +1 => n2+n+2= (3k+1)2 +3k+3; dế thấy 3k+3 chia hết cho 3 nhưng (3k+1)2 không chia hết cho 3 nên n2 +n+2 không chia hết cho 3

n=3k+2 => n(n+1) = (3k+1)(3k+3)=3(3k+1)(k+1) chia hết cho 3 nên (3k+2)(k+3)+2 không chia hết cho 3

vậy với mọi n đều không chia hết
 

6 tháng 2 2021

Đây nè bạn

2 tháng 4 2021

=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10

=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10

25 tháng 2 2016

ai giúp mk vs

14 tháng 2 2023

\(B=n^2+n+3\)
\(=n.n+n+3\)
\(=n\left(n+1\right)+3\)
Mà \(n\left(n+1\right)⋮2\) với mọi \(n\in Z\)
\(\Rightarrow B⋮̸2\)