K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b)Ta có:\(A=2018^2+2019^2+2019^2.2018^2\)

\(=\left(2018^2-2.2018.2019+2019^2\right)+2.2018.2019+\left(2018.2019\right)^2\)

\(=\left(2019.2018\right)^2+2.2018.2019+1^2=\left(2019.2018+1\right)^2\)là số chính phương (đpcm)

c)Ta có:Xét hiệu a^2+b^2+c^2+d^2-a(b+c+d),ta có:

\(a^2+b^2+c^2+d^2-a\left(b+c+d\right)=a^2+b^2+c^2+d^2-ab-ac-ad\)

\(=\left(\frac{1}{4}a^2-ab+b^2\right)+\left(\frac{1}{4}a^2-ac+c^2\right)+\left(\frac{1}{4}a^2-ad+d^2\right)+\frac{a^2}{4}\)

\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}\right)^2\ge0\forall a,b,c,d\left(đpcm\right)\)

\(\Rightarrow a^2+b^2+c^2\ge a\left(b+c+d\right)-d^2\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}b=c=d=\frac{a}{2}\\\frac{a}{2}=0\end{cases}\Leftrightarrow}a=b=c=d=0\)

6 tháng 10 2019

\(sigma\frac{a}{1+b^2}=sigma\left(a-\frac{ab^2}{1+b^2}\right)\ge sigma\left(a\right)-sigma\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}>\frac{2018}{2003}\)

17 tháng 11 2018

\(a^3+b^3=c\left(3ab-c^2\right)\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2bc-2ca\right]=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(loai\right)\\a=b=c\end{cases}}\)

Mà a + b + c = 3 nên a = b = c = 1

Khi đó \(A=672.\left(1+1+1\right)+2=672.3+2=2018\)