K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Nếu n chẵn thì cái tổng chia hết cho 2

Nếu n lẻ thì

Phân tích nhân tử

Ta có : \(n^4+4^n=\left(n^2\right)^2+\left(2^n\right)^2+2n^2+2^n=\left(n^2+2^n\right)^2-n^2+2^{n+1}=\left(n^2+2^n-n.2^{\frac{n+1}{2}}\right)\left(n^2+2^n+n.2^{\frac{n+1}{2}}\right)\)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh \(n^2+2^n-n.2^{\frac{n+1}{2}}\ge1\)

Tương đương với \(n^2+2^{n+1}-2n.2^{\frac{n+1}{2}}+n^2\ge2\) ( nhân 2 cho 2 vế )

\(BĐT\Rightarrow\left(n-2^{\frac{n+1}{2}}\right)^2+n^2\ge2\)đúng với n lẻ và n ≥ 3 

Vậy, ta có điều phải chứng minh 

10 tháng 11 2016

bạn à 4n không phải n^4

11 tháng 3 2016

đơn giản mà!

\(2^n+1\) là SNT nên \(n=2^x\) Do đó, \(2^n-1=2^{2^x}-1\)chia hết cho 3

DD
6 tháng 2 2021

Ta có: \(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)

\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n^3+n^2-2n^2+2\right)=n^2\left(n+1\right)\left[n^2\left(n+1\right)-2\left(n+1\right)\left(n-1\right)\right]\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Để \(A\)là số chính phương thì \(n^2-2n+2\)là số chính phương. 

Ta có: \(n^2-2n+2< n^2\)(do \(n>1\)

\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)nên \(n^2-2n+2\)không thể là số chính phương. 

Vậy \(A=n^6-n^4+2n^3+2n^2\)không là số chính phương. 

27 tháng 8 2019

Câu hỏi của nguyễn đình thành - Toán lớp 9 - Học toán với OnlineMath

27 tháng 8 2019

Anh tham khảo tại đây:

Câu hỏi của Thanh Bách - Toán lớp 8 - Học toán với OnlineMath

10 tháng 10 2017

HELP ME PLEASE!!!!!!!!

11 tháng 10 2017

Nếu nn chẵn thì cái tổng chia hết cho 2

Nếu nn lẻ thì

Phân tích nhân tử

Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1

Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )

BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3 

Vậy, ta có điều phải chứng minh

Đúng thì  :luoi: