Tìm x, y: \(|9-7x|=5x-3\)
Giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7x+2/5x+7=7x-1/5x+1=>37/5x+7=34/5x+1=>37/5x-34/5x=1-7=>3/5x=-6=>x=-6:3/5=-10 vay x=-10 nho ****
a, (x-1)3=8
(x-1)3=23 hoac (x-1)3 =(-2)3
x-1=2 x-1= -2
x=3 x= -1
Vay x=3 hoac x= -1
a ) \(\left(x-1\right)^3=8\)
\(\Leftrightarrow\left(x-1\right)=\sqrt[3]{8}\)
\(\Leftrightarrow\left(x-1\right)=2\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\) .
c
Ta có: \(5x^3+4x^2-3x\left(2x^2+7x-1\right)\)
\(=5x^3+4x^2-6x^3-21x^2+3x\)
\(=-x^3-17x^2+3x\)
a, 7x + 10x = 5x
17x = 5x
17x - 5x = 0
12x = 0
x =0
2;
a, 4x + 7x = 22
11x = 22
x = 2
b, 12x - 8x = 25
4x = 25
x = \(\dfrac{25}{4}\)
c, \(\dfrac{1}{2}\)x - \(\dfrac{1}{3}\)x = \(\dfrac{4}{5}\)
(\(\dfrac{1}{2}-\dfrac{1}{3}\))x = \(\dfrac{4}{5}\)
\(\dfrac{1}{6}\)x = \(\dfrac{4}{5}\)
x = \(\dfrac{4}{5}\) : \(\dfrac{1}{6}\)
x = \(\dfrac{24}{5}\)
a: =>x^3-3x^2+3x^2-9x+4x-12+a+12 chia hết cho x-3
=>a+12=0
=>a=-12
b: =>2x^2-6x+5x-15+a+15 chia hết cho x-3
=>a+15=0
=>a=-15
c: =>x^3-2x^2-5x^2+20+a-20 chia hết cho x-2
=>a-20=0
=>a=20
e: =>10x^2-15x+8x-12+a+12 chia hết cho 2x-3
=>a+12=0
=>a=-12
f: =>5x^3-x^2+5x^2-x-5x+1-a-1 chia hết cho 5x-1
=>-a-1=0
=>a=-1
a: =>x^3-3x^2+3x^2-9x+4x-12+a+12 chia hết cho x-3
=>a+12=0
=>a=-12
b: =>2x^2-6x+5x-15+a+15 chia hết cho x-3
=>a+15=0
=>a=-15
c: =>x^3-2x^2-5x^2+20+a-20 chia hết cho x-2
=>a-20=0
=>a=20
e: =>10x^2-15x+8x-12+a+12 chia hết cho 2x-3
=>a+12=0
=>a=-12
f: =>5x^3-x^2+5x^2-x-5x+1-a-1 chia hết cho 5x-1
=>-a-1=0
=>a=-1
x - 4/5 = 3/7
x = 3/7 + 4/5
x = 43/35
x + 3/7 = 4/5
x = 4/5 - 3/7
x = 13/35
19/20 - x = 8/5 - 3/4
19/20 - x = 17/20
x = 19/20 - 17/20
x = 2/20 = 1/10
4/5 x X = 6/9 - 4/7
4/5 x X = 2/21
x = 2/21 : 4/5
x =5/42
x : 7/9 = 6/8
x = 6/8 x 7/9
x = 7/12
2/3 - x/6 = 6/18
x/6 = 2/3 - 6/18
x/6 = 1/3
x/6 = 2/6
=> x =2
1. x = 43/35
2. x = 13/35
3. x = 1/10
còn lại tự tính nhá
tui bận òi
\(|9-7x|=5x-3\)
\(\Rightarrow9-7x=5x-3\)
\(\Rightarrow9+3=7x+5x\)
\(\Rightarrow12=x\left(5+7\right)\)
\(\Rightarrow12=12x\)
\(\Rightarrow x=12\div12\)
\(\Rightarrow x=1\)