tìm min N=\(\dfrac{x^3+2000}{x}\) x>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có :
D = x^2 + 2000/x
= x^2 + 1000/x + 1000/x
Áp dụng bđt cosi thì :
D >= \(3\sqrt[3]{x^2.\frac{1000}{x}.\frac{1000}{x}}\)= 3.100 = 300
Dấu "=" xảy ra <=> x^2 = 1000/x <=> x=10
Vậy Min D = 300 <=> x=10
Tk mk nha
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5
\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)
\(N=\frac{x^2+2000}{x}=x+\frac{2000}{x}\ge2\sqrt{x.\frac{2000}{x}}=2\sqrt{2000}=40\sqrt{5}\)
Dấu "=" tại \(x=20\sqrt{5}\)
Theo BĐT \(AM-GM\) ta có :
\(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{12^2}{3}=48\)
\(x^2+y^2+z^2\ge8\left(x+y+z\right)-\left(16+16+16\right)=48\)
Theo BĐT Cauchy schwarz dưới dạng en-gel ta có :
\(\dfrac{x^3}{y+1}+\dfrac{y^3}{z+1}+\dfrac{z^3}{x+1}=\dfrac{x^4}{xy+z}+\dfrac{y^4}{yz+y}+\dfrac{z^4}{zx+z}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx+x+y+z}=\dfrac{48^2}{48+12}=\dfrac{192}{5}\)
Vậy \(MIN_Q=\dfrac{192}{5}\) . Dấu \("="\Leftrightarrow z=y=z=4\)
Ta có :
\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)(1)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)( "=" khi a=b ) , ta có :
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}\)
\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{\left(x+y\right)^2}=\frac{4}{1^2}=4\) (2)
Lại có : \(\left(x-y\right)^2>=0\) ("=" khi x=y )
\(\Leftrightarrow x^2-2xy+y^2>=0\)
\(\Leftrightarrow x^2+y^2>=2xy\)
\(\Leftrightarrow x^2+y^2+2xy>=4xy\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow1>=4xy\)
\(\Leftrightarrow2xy< =\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2xy}>=2\) (3)
Từ (1) , (2) và (3) , suy ra : \(K>=4+2=6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2+y^2=2xy\\x=y\\x+y=1\end{cases}}\)
\(\Rightarrow x=y=\frac{1}{2}\)
Vậy Min\(K=6\)khi \(x=y=\frac{1}{2}\)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(x^3+2000=x^3+1000+1000\geq 3\sqrt[3]{x^3.1000.1000}=300x\)
\(\Rightarrow N=\frac{x^3+2000}{x}\geq \frac{300x}{x}=300\)
Vậy \(N_{\min}=300\)
Dấu "=" xảy ra khi \(x^3=1000\Leftrightarrow x=10\)