K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2.

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

\(\Rightarrow a=\frac{2b}{2}=b;b=\frac{2c}{2}=c;c=\frac{2d}{2}=d;d=\frac{2a}{2}=a\)

\(\Rightarrow a=b=c=d\)

Ta có : \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)

\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)

\(=\frac{4a}{2a}=2\)

3.

\(\left(x-1\right)\left(x-3\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-1< 0\\x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1>0\\x-3< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 1\\x>3\end{cases}}\)( loại ) hoặc \(\hept{\begin{cases}x>1\\x< 3\end{cases}}\)

Vậy \(1< x< 3\)

Đặt \(A=\frac{1}{4\times9}+\frac{1}{9\times14}+\frac{1}{14\times19}+...+\frac{1}{44\times49}\)

Ta có : \(5\times A=\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{44\times49}=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}=\frac{1}{4}-\frac{1}{49}\)

\(=\frac{49}{196}-\frac{4}{196}=\frac{45}{196}\)

\(\Rightarrow A=\frac{9}{196}\)

Đặt \(B=1-3-5-7-...-49=1-\left(3+5+...+49\right)\)

Đặt \(C=3+5+...+49\) ( khoảng cách là 2 )

Số số hạng là : \(\left(49-3\right):2+1=24\)

Tổng C là : \(\left(49+3\right)\times24:2=624\)

\(\Rightarrow B=1-264=-623\)

Vậy \(A=\frac{9}{196}\times\frac{-623}{89}=\frac{-9}{28}\)

Dòng cuối cùng mình không chắc là đúng nhé !

7 tháng 8 2017

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}\)

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2017a-2018b}{2017c-2018d}=\frac{2018a+2019b}{2018c+2019d}\)

<=>\(\left(2017a-2018b\right)\left(2018c+2019d\right)=\left(2018a+2019b\right)\left(2017c-2018d\right)\)

<=>\(\frac{2017a-2018b}{2018a+2019b}=\frac{2017c-2017d}{2018x+2019d}\)(đpcm)

8 tháng 8 2017

nhật gà

20 tháng 10 2018

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

                  \(\Rightarrow\frac{2018a}{2018c}=\frac{2019b}{2019d}\)

Áp dụng t/c DTSBN : \(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}=\frac{2018a+2019b}{2018c+2019d}\)

                  Cái này đến đây là đề sai nhé ! Đề phải cho là C/m cái (2018a-2019b).(2018c+2019d) = (2018a-2019b)(2018c+2019d) mới đúng

6 tháng 10 2018

ĐK: \(\hept{\begin{cases}b\ne0\\d\ne0\end{cases}}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có:

\(\frac{2017a+2018b}{2018a-2019b}=\frac{2017bk+2018b}{2018bk-2019b}=\frac{b\left(2017k+2018\right)}{b\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (1)

\(\frac{2017c+2018d}{2018c-2019d}=\frac{2017dk+2018d}{2018dk-2019d}=\frac{d\left(2017k+2018\right)}{d\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)

6 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}=\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019c}{2018c-2019d}\)

\(=>2017a+2018b.\left(2018c-2019d\right)=2017c+2018d.\left(2018a-2019b\right)\)

\(\frac{2017a+2018b}{2018b-2019b}=\frac{2017c+2018d}{2018c-2019d}\)

20 tháng 11 2019

Với \(a+b+c+d=0\)

\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)

Khi đó \(M=-1-1-1-1=-4\)

Với \(a+b+c+d\ne0\)

Áp dụng dãy tỉ số bằng nhau

\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)

\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow M=4\)