K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

20 tháng 3 2016

A = [1/(x^2 + y^2) + 1/2xy ] + (1/4xy + 4xy) + 5/4xy 
Dễ thấy 1/(x^2 + y^2) + 1/2xy >= 4/(x+y)^2 >= 4 
1/4xy + 4xy >= 2.căn (1/4xy .4xy) = 2 
5/4xy >= 5 ( vì xy <= (x+y)^2/4 <= 1/4 ) 
Vậy A >= 4 + 2 + 5 
hay GTNN của A là 11 
Dấu = xảy ra khi cả 3 dấu = trên cùng xảy ra <=> x = y = 1/2

5 tháng 8 2017

Áp dụng BĐT AM-GM ta có:

\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}=\frac{1}{x^2+y^2}+\frac{2}{4xy}+\frac{1}{4xy}\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{1}{4xy}\)

\(\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{1}{4\cdot\frac{1}{4}}=4+1=5\)

Xảy ra khi \(x=y=\frac{1}{2}\)

13 tháng 10 2017

Ta có: \(1=x+y\ge2\sqrt{xy}\)

\(\Rightarrow4xy\le1\)

\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{1}=\frac{4}{\left(x+y\right)^2}+1=\frac{4}{1}+1=5\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

13 tháng 10 2017

Áp dụng BĐT AM - MG ta có :

\(xy\)\(\le\)\(\frac{\left(x+y\right)^2}{4}\)\(=\)\(\frac{1}{4}\)

Áp dụng BĐT Cauchy - Schwarz dạng Engel :

\(S\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{3}{4xy}\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{2}{4xy}\)\(-\)\(\frac{1}{4xy}\)

\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{1}{2xy}\)\(-\)\(\frac{1}{4xy}\)\(\ge\)\(\frac{\left(1-1\right)^2}{x^2-y^2-2xy}\)\(-\)\(\frac{1}{4xy}\)

\(\ge\)\(\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)\(-\)\(\frac{1}{4.\frac{1}{4}}\)\(=\)\(4\)\(-\)\(1\)\(=\)\(5\)

Xảy ra khi  \(x\)\(=\)\(y\)\(=\)\(\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:

$A=x^4-4x^3+7x^2-12x+75$

$=(x^2-2x)^2+3x^2-12x+75$

$=(x^2-2x)^2+3(x^2-4x+4)+63$

$=(x^2-2x)^2+3(x-2)^2+63\geq 63$

Vậy $A_{\min}=63$. Giá trị này đạt tại $x^2-2x=x-2=0$

$\Leftrightarrow x=2$

NV
5 tháng 2 2021

\(A=\left(x^4-4x^3+4x^2\right)+\left(3x^2-12x+12\right)+63\)

\(A=x^2\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)+63\)

\(A=\left(x^2+3\right)\left(x-2\right)^2+63\ge63\)

\(A_{min}=63\) khi \(x=2\)

29 tháng 11 2023

\(B=\dfrac{x^4+2016x^2+4028}{x^2+2}\)

\(=\dfrac{x^4+2x^2+2014x^2+4028}{x^2+2}\)

\(=x^2+2014>=2014\forall x\)

Dấu '=' xảy ra khi x=0

31 tháng 10 2021

đặt biểu thức là A. Ta có:

A=x2 - 4xy + 5y2 - 2y + 28

  = (x2-4xy+4y2) + (y2-2y +1)+27

  =(x-2y)2 + (y-1)2 + 27

vì (x-2y)≥ 0; (y-1)2 ≥ 0 ⇔ A ≥ 27

\(\left[\begin{array}{} (x-2y)^2=0\\ (y-1)^2 =0 \end{array} \right.\)           ⇔\(\left[\begin{array}{} x=2\\ y=1\end{array} \right.\)

Vậy, Min A=27 khi x=2; y=1

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

$A=(x^2+4y^2+4xy)+x^2+5-8x-12y$

$=(x+2y)^2-6(x+2y)+x^2+5-2x$

$=(x+2y)^2-6(x+2y)+9+(x^2-2x+1)-5$

$=(x+2y-3)^2+(x-1)^2-5\geq 0+0-5=-5$

Vậy $A_{\min}=-5$. Giá trị này đạt được khi $x+2y-3=x-1=0$

$\Leftrightarrow x=1; y=1$