Chứng minh BĐT: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)
P/s: Kudo đã gia nhập Akatsuki,ai muốn gia nhập vui lòng ib riêng. :v
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\frac{3}{2}\)
\(< =>\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{3}{2}+\frac{3}{2}=\frac{6}{2}=3\)(bđt nesbitt)
Giờ ta chỉ cần chỉ ra được \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\) thì bài toán được hoàn tất chứng minh
Thật vậy , theo BĐT Cauchy ta có \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3\sqrt[3]{\frac{abc}{abc}}=3\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Vậy bài toán đã được hoàn tất chứng minh
p/s : tí mình sẽ chứng minh bđt nesbitt ở dưới nhé
BĐT cần CM <=> \(\frac{a}{b}-\frac{a}{b+c}+\frac{b}{c}-\frac{b}{c+a}+\frac{c}{a}-\frac{c}{a+b}\ge\frac{3}{2}\)
<=> \(\frac{ac}{b\left(b+c\right)}+\frac{ab}{c\left(c+a\right)}+\frac{bc}{a\left(a+b\right)}\ge\frac{3}{2}\) (1)
Đặt: \(A=\frac{ab}{c\left(c+a\right)}+\frac{bc}{a\left(a+b\right)}+\frac{ca}{b\left(b+c\right)}\)
\(A=\frac{a^2b^2}{abc\left(c+a\right)}+\frac{b^2c^2}{abc\left(a+b\right)}+\frac{c^2a^2}{abc\left(b+c\right)}\)
ÁP DỤNG BĐT CAUCHY - SCHWARZ SẼ ĐƯỢC:
=> \(A\ge\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b+b+c+c+a\right)}=\frac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\)
TA TIẾP TỤC 1 BĐT: \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)
=> \(A\ge\frac{3abc\left(a+b+c\right)}{2abc\left(a+b+c\right)}=\frac{3}{2}\) (2)
TỪ (1) VÀ (2) => TA CÓ ĐPCM.
\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
=> \(A+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3\sqrt[3]{\frac{1}{a+b}.\frac{1}{b+c}.\frac{1}{c+a}}=\frac{9}{2}\) (AM - GM)
=> \(A\ge\frac{9}{2}-3=\frac{3}{2}\) (đpcm)
Đặt \(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(A=\frac{a^2}{ba+ca}+\frac{b^2}{cb+ba}+\frac{c^2}{ac+bc}\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(A=\frac{a^2}{ba+ca}+\frac{b^2}{cb+ba}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2.\left(ab+bc+ca\right)}\)
Ta c/m BĐT phụ \(ab+bc+ca\le\frac{1}{3}.\left(a+b+c\right)^2\)( tự c/m)
Áp dụng:
\(A\ge\frac{\left(a+b+c\right)^2}{2.\frac{1}{3}\left(a+b+c\right)^2}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)
đpcm
Tham khảo nhé~
Cách 1:
Áp dụng bđt Bunhiacopxki :
\(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\cdot\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Cách 2:
Áp dụng bđt Cô-si :
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\cdot\left(b+c\right)}{4\cdot\left(b+c\right)}}=a\)
Tương tự : \(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b\); \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
Cộng vế :
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge a+b+c-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
áp dụng bđt cauchy ta có:
\(\frac{a^3}{b}+ab\ge2a^2;\frac{b^3}{c}+bc\ge2b^2;\frac{c^3}{a}+ca\ge2c^2\)
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-ab-bc-ca\ge2\left(a^2+b^2+c^2\right)-a^2-b^2-c^2\)
\(=a^2+b^2+c^2\left(Q.E.D\right)\)
Theo Cauchy - Schwarz ta có : \(\left(a^2+b^2+c^2\right)\left(c^2+a^2+b^2\right)\ge\left(ab+bc+ac\right)^2\)
\(\Rightarrow a^2+b^2+c^2\ge\left|ab+bc+ac\right|\ge ab+ac+bc\)
Ta có : \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)
\(=a^2+b^2+c^2\)(đpcm)
Đây nhé
Đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)
Thay vào PT đã cho ở đề bài , ta có :
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)
d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)
thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)
Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)
\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)
\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)
b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu dc chứng minh.
Ta có:
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{1}{2}\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{2}\)
Mấy cái dấu "=" anh tự xét.
Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)
a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)
b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)