Chứng minh rằng:
\(A=\left(2^n-1\right)\cdot\left(2^n+1\right)\)chia hết cho 3
Mọi người giúp em với ạ! Em cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
=\(3^{n+1}.2.5+2^{n+2}.3\)=\(2.3\left(3^n+2^{n+1}\right)⋮6\)
=> dpcm
nếu là chính phương thì ntn nha
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
đặt \(t=n^2+3n\left(t\in Z^+\right)\)
phương trình thành:
\(t\left(t+2\right)=t^2+2t\)
vì \(t^2< t^2+2t< t^2+2t+1\)
hay \(t^2< t^2+2t< \left(t+1\right)^2\)
=> \(t^2+2t\) không thể là số chính phương
=>\(n\left(n+2\right)\left(n+2\right)\left(n+3\right)\) luôn luôn không thể là số chính phương
Ta có: \(\frac{a^2}{b}+\frac{b^2}{a}+7\left(a+b\right)\ge8\sqrt{2\left(a^2+b^2\right)}\)
\(\Leftrightarrow a^3+b^3+7ab\left(a+b\right)\ge8ab\sqrt{2\left(a^2+b^2\right)}\)
Ta có: \(VP=8\sqrt{ab}\sqrt{\left(a^2+b^2\right)\cdot2ab}\le^{am-gm}4\sqrt{ab}\left(a+b\right)^2\)
\(VT=\left(a+b\right)\left[\left(a+b\right)^2+4ab\right]\ge^{am-gm}\left(a+b\right)4\sqrt{ab}\left(a+b\right)\ge VP\)
=> ĐPCM
\(\Delta=\left(m-1\right)^2+8>0;\forall m\) nên pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)
\(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x_2+1}\right)^2=1\)
\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}\right)^2+\left(\dfrac{x_2-1}{x_2+1}\right)^2=1\)
\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}+\dfrac{x_2-1}{x_2+1}\right)^2-2\left(\dfrac{x_1-1}{x_1+1}\right)\left(\dfrac{x_2-1}{x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{\left(x_1-1\right)\left(x_2+1\right)+\left(x_1+1\right)\left(x_2-1\right)}{\left(x_1+1\right)\left(x_2+1\right)}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{2x_1x_2-2}{x_1x_2+x_1+x_2+1}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{-6}{m-2}\right)^2+2\left(\dfrac{m}{m-2}\right)=1\)
\(\Leftrightarrow36\left(\dfrac{1}{m-2}\right)^2+4\left(\dfrac{1}{m-2}\right)+1=0\)
Pt trên vô nghiệm nên ko tồn tại m thỏa mãn yêu cầu
Tới đó đặt \(\dfrac{1}{m-2}=t\) là thành 1 pt bậc 2 bình thường, bấm máy thấy nó vô nghiệm là đủ kết luận rồi em
Câu 1:
\(\Leftrightarrow6x-18-8x-4-2x+8=4-3\left(2x+1\right)+5\left(2x-1\right)\)
=>-4x-14=4-6x-3+10x-5
=>-4x-14=4x-4
=>-8x=10
hay x=-5/4
\(\left(2n+3\right)^2-\left(2n-1\right)^2=4n^2+12n+9-4n^2+4n-1=16n+8=8\left(2n+1\right)⋮8\)
\(\left(2n+3\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+3-2n+1\right)\left(2n+3+2n-1\right)\)
\(=4\left(4n-2\right)\)
\(=8\left(2x-1\right)\) Vì \(8⋮8\)
\(\Rightarrow8\left(2n-1\right)⋮(ĐPCM)\)
Vì \(2^n-1\)và \(2^n+1\)là 2 số lẻ liên tiếp
Đặt \(2^n-1=3k\)và \(2^n+1=3k+2\)\(k\inℕ\)
\(\Rightarrow\left(2^n-1\right).\left(2^n+1\right)=3k.\left(3k+2\right)\)
mà \(3k⋮3\)\(\Rightarrow3k.\left(3k+2\right)⋮3\)
hay \(A⋮3\left(đpcm\right)\)