CMR neu a2 =bc (a#b, a#c) thi \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
Đề bài sai, phản ví dụ: \(a=b=0,c=1\)
BĐT này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
Cho (a2−bc)(b−abc)=(b2−ac)(a−abc);abc≠0;a≠b(a2−bc)(b−abc)=(b2−ac)(a−abc);abc≠0;a≠b
CMR:1a+1b+1c=a+b+c
Ta có: `a, b, c` là các cạnh của tam giác
`-` Theo bất đẳng thức tam giác ta có: `A+B>C -> AB+AC>A^2`
Tương tự vế trên
`-> CA+CB>C^2 ; AB+BC>B^2`
Cộng tổng tất cả các vế trên: `AC+BC+AB+AC+AB+BC > A^2+B^2+C^2`
`-> 2 (AB+AC+BC) > A^2+B^2+C^2 (đpcm)`
Tỷ lệ thức này sai nhé!
Đúng thì phải theo kết quả của lời giải này nhé!
Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k\Rightarrow k^{2010}=\frac{a_1.a_2...a_{2010}}{a_2.a_3...a_{2011}}=\frac{a_1}{a_{2011}}\)
Mà \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k=\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\)
Vậy \(\frac{a_1}{a_{2011}}=\left(\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\right)^{2010}=k^{2010}\)
\(a,\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}\)
\(\text{Suy ra: }\frac{a+b}{c+a}=\frac{a}{c}\Rightarrow c.\left(a+b\right)=a.\left(c+a\right)\Rightarrow ac+bc=ac+a^2\)
=>a2=bc
b)Viết đề rõ lại giúp
\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{a+c}{b+a}=\frac{c-a}{a-b}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)