K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

2chia hết cho 22 và 219 chia hết cho 22 

nên \(2^9+2^{19}⋮4\)(1)

Mà \(2^9+2^{19}=2^9\left(2^{10}+1\right)=2^9.1025⋮25\) (2)     (vì 1025 chia hết cho 25)

Từ (1) và (2) ta có: \(2^9+2^{19}⋮\left(4.25\right)\) (vì 4 và 25 nguyên tố cùng nhau)

hay \(\left(2^9+2^{19}\right)⋮100\)

22 tháng 10 2018

Thưa bạn, bạn trình bày vẫn chưa được nhé, phần 1 + 210 = 1025 ấy, không phải tính cụ thể đâu

4 tháng 11 2018

To cá: 29 + 219

= 29 + 29 . 210

= 29 . (1 + 210)

= 512 . 1025

Ta thấy 512 . 1025 thì có 2 chữ số tận cùng là 2 chữ số tận cùng của 12 . 25 = 300.

\(\Rightarrow\) 512 . 1025 có 2 chữ số tận cùng là 00

\(\Rightarrow\) 512 . 1025 \(⋮\) 100

Vậy, 29 + 219 \(⋮\) 100.

27 tháng 10 2018

=512+524288

=524800:100

=5248

vậy số đó chia hết cho 100

4 tháng 11 2018

Không tính cụ thể ra nhé bạn

29 tháng 10 2020

BANG BO DIT ME

30 tháng 3 2017

3x  có chữ số tận cùng là số lẻ 

Suy ra 3100 có chữ số tận cùng là số lẻ

         19990 có chữ số tận cùng là số lẻ

  Suy ra 3100 +19990 có chữ số tận cùng là : lẻ + lẻ = chẵn

   Vậy 3100 +19990  chia hết cho 2

18 tháng 5 2023

3x  có chữ số tận cùng là số lẻ 

Suy ra 3100 có chữ số tận cùng là số lẻ

         19990 có chữ số tận cùng là số lẻ

  Suy ra 3100 +19990 có chữ số tận cùng là : lẻ + lẻ = chẵn

   Vậy 3100 +19990  chia hết cho 2

31 tháng 1 2016

Vì a chia hết cho 3 => a2 chia hết cho 9

Vì b chia hết cho 3 => b2 chia hết cho 9

Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9

=> a2 + ab + b2 chia hết cho 9

 

20 tháng 3 2016

24^1917 + 14^1917 
=(24+14) (lương liên hợp) 
=38(lương liên hợp) 
Chia hết cho 19 

a có: 
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4). 
2^5 = 32 đồng 7 (mod 25) 
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25). 
mặt khác: 
A= 2^9 +2^99 =2^9(1+2^90) 
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25) 
=> 2^9 +2^99 đồng dư 0 (mod 25) 
BSCNN của 4 và 25 =100 
=> A đồng dư 0 (mod 100) 
hay A chia hết cho 100. 

22226 đồng dư 1 (mod7)         
và 5555=6x925+5
=> 22225555 đồng dư 2222 5 (mod7)
mà 22225 = 2222 2x 22222 x 2222 
22222 đồng dư 2 (mod 7) => 2222 5  đồng dư 2x2x2222 (mod 7)
=> 22225555 đồng dư với 5 (mod 7)
Tương tự có 55552222 đông dư 2 (mod 7)
Vậy => 22225555+55552222 đồng dư 5+2=7 (mod 7)
=> 22225555+55552222 đồng dư 0 (mod7)
=>đpcm

25 tháng 12 2016

de qua di

7 tháng 11 2015

Câu a và câu b bài 2 xem Câu hỏi tương tự 
Bài 2 câu c : 
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 ) 
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0 
=> Số tận cùng của A = 0. 
Bài 1 để nghiên cứu

15 tháng 7 2016

1) \(10^{19}+10^{18}+10^{17}=10^{16}.10^3+10^{16}.10^2+10^{16}.10=10^{16}.\left(1000+100+10\right)=10^{16}.1110\)

vì 1110 : 555 bằng 2 

=> ................... chia hết cho 555

15 tháng 7 2016

1) ( 1019+ 1018+1017) chia hết cho 555

= 1017.102+1018.10+1017

1017.(102+10+1)

= 1017.111

= 1016.10.111

= 1016.1110 = 1016.555.2

=> ( 1019+ 1018+1017) chia hết cho 555