Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 thì \(\left(p+1\right)\left(p-1\right)⋮24\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
vậy p + 1 và p - 1 là hai số chẵn.
Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.
đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)
A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1)
Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.
⇒ 4.k.(k + 1) ⋮ 8
⇒ A = (p + 1).(p - 1) ⋮ 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng:
p = 3k + 1; hoặc p = 3k + 2
Xét trường hợp p = 3k + 1 ta có:
p - 1 = 3k + 1 - 1 = 3k ⋮ 3
⇒ A = (p + 1).(p - 1) ⋮ 3 (2)
Từ (1) và (2) ta có:
A ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)
Xét trường hợp p = 3k + 2 ta có
p + 1 = 3k + 2 + 1 = 3k + 3 = 3.(k + 1) ⋮ 3 (3)
Từ (1) và (3) ta có:
A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)
Kết hợp (*) và(**) ta có
A \(⋮\) 24 (đpcm)
Câu 1:
\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)+\left(1+\frac{1}{3.5}\right)+...\left(1+\frac{1}{2014.2016}\right)\)
\(\Rightarrow C=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{2015.2015}{2014.2016}\)
\(\Rightarrow C=\frac{4.9.16...2015.2015}{3.8.15...2014.2016}\)
\(\Rightarrow C=\frac{2.2.3.3.4.4...2015.2015}{1.3.2.4...2014.2016}\)
\(\Rightarrow C=\frac{2.3.4...2015.2.3.4...2015}{1.2.3...2014.3.4.5...2016}\)
\(\Rightarrow C=\frac{2015}{1008}.\)
Vậy \(C=\frac{2015}{1008}.\)
Câu 2:
Do p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\)hoặc\(3k+2\)
+ Nếu \(p=3k+1\Rightarrow p^2-1=\left(3k+1\right)^2-1\)
\(=9k^2+3k+3k+1-1\)
\(=9k^2+6k⋮3.\)( 1 )
+ Nếu \(p=3k+2\Rightarrow p^2-1=\left(3k+2\right)^2-1\)
\(=9k^2+6k+6k+4-1\)
\(=9k^2+12k+3⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow p^2-1⋮3\left(đpcm\right).\)
Câu 3:
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1000^{10}=10^{30}.\)( 1 )
\(2^{100}=2^{31}.2^6.2^{63}=2^{31}.64.512^7< 2^{31}.125.625^7=2^{31}.5^{31}=\)\(10^{31}.\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow10^{30}< 2^{100}< 10^{31}.\)
\(\Rightarrow\)2100 khi viết trong hệ thập phân có 31 chữ số.
Đáp số: 31 chữ số.
Câu 1 :
C = (1 + 1/1.3)(1 + 1/2.4)(1 + 1/3.5) .... (1 + 1/2014.2016)
C = (1.3/1.3 + 1/1.3) (2.4/2.4 + 1/2.4) ... (2014.2016/2014.2016 + 1/2014.2016)
C = 2.2/1.3 * 3.3/2.4 * ... * 2015.2015/2014.2016
C = 2.3....2015/1.2....2014 * 2.3....2015/3.4....2016
C = 2015 * 1/1008
C = 2015/1008
Ta có p - 1 p p + 1 ⋮ 3 mà (p, 3) = 1 nên
p - 1 p + 1 ⋮ 3 (1)
p là số nguyên tố lớn hơn 3 nên p là số lẽ, p – 1 và p + 1 là hai số chẳn liên tiếp , có một số là bội của 4 nên tích của chúng chia hết cho 8 (2)
Từ (1) và (2) suy ra (p – 1)(p + 1) chia hết cho 2 nguyên tố cùng nhau là 3 và 8
Vậy (p – 1)(p + 1) chia hết cho 24.
Ví dụ : p là 5 thì (p-1)(p+1) = (5-1)(5+1)=4.6=24 .
Vì (5-1)(5+1) (tức 24) chia hết cho 24 → các SNT P lớn hơn 3 thì (p-1)(p+1) chia hết cho 24
Tick nha !
Một số chia hết cho 24 là một số chia hết cho 4,6
Mà chia hết cho 6 là chia hết cho 2 và 3
Theo đề bài thì P>3
Thì (P-1).(P+1) sẽ có 3 số hạng là:(P-1);P và(P+1)
=>(P-1)(P+1) sẽ chia hết cho 3
P là số nguyên tố lớn hơn 3 nên P là số lẻ(P không thể là 2)
Mà P là số lẻ thì (P-1) hoặc (P+1) là số chẵn
Hiệu của (P+1) - (P-1) =2
Thì một trong hai số (P-1) hay (P+1) sẽ chia hết cho 4
=>P thuộc SNT và >3 thì chắc chắn (P-1)(P+1) chia hết cho 24
Một số nguyên tố lớn hơn 3 khi chia cho 3 sẽ có 2 khả năng xảy ra
p = 3k + 1 ; p = 3k + 2 ;
Với p = 3k + 1
=> (p + 1)(p - 1) = p2-1=(3k+1)2-1=9k2+6k=3k(3k+2)
Vì đây là tích 2 số tự nhiên liên tiếp => chia hết cho 2 , 3 => (p-1)(p+1) chia hết cho 6
C/m tương tự để chia hết cho 24
Với p = 3k + 2
tương tự