Tì giá trị nhỏ nhất của \(B=\frac{x}{2}+\frac{2}{x-1}\) với x > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(f_{\left(x\right)}=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\)
AD cô-si ta được \(\frac{x-1}{2}+\frac{2}{x-1}\ge2\)( dấu "=" xảy ra khi x=3)
=> \(f_{\left(x\right)}\ge2+\frac{1}{2}=\frac{5}{2}\)
=> Min f(x) =5/2 tại x =3
a,\(A=x^2-2x+\frac{1}{x-1}\)
\(A=x^2-2x+1-\frac{x-2}{x-1}\)
\(A=\left(x-1\right)^2+\frac{-\left(x-2\right)}{x-1}\ge\frac{-\left(x-2\right)}{x-1}\)
Do \(x-2>x-1\Rightarrow-\left(x-2\right)< x-1\)
Mà \(\frac{-\left(x-2\right)}{x-1}\ge-1\)
Vậy Min A = -1 <=> x = 1
\(a,M=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
\(=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\right]\)
\(=1:\left[\frac{\left(x^2+2\right)+\left(x+1\right)\left(x-1\right)+\left(-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\left[\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\frac{x}{x^2+x+1}=\frac{x^2+x+1}{x}\)
Để E=\(\frac{X^2}{x-1}\)nhận giá trị nhỏ nhất thì x2 nhỏ nhất
Mà \(x^2\ge0\)và x>1 nên x=2
E=x2/x-1=(x2-1+1)/(x-1)=x2-1/x-1 + 1/x-1= (x-1)(x+1)/x-1 + 1/x-1=x+1 + 1/x-1 = (x-1 + 1/x-1) + 2
Áp dụng bđt am-gm (do x-1>0) ta có E >/ 2+2 >/ 4
đẳng thức xảy ra <=> x=2
Thấy B\(=\frac{x}{2}-\frac{1}{2}+\frac{2}{x-1}+\frac{1}{2}\)
\(=\left(\frac{x-1}{2}+\frac{2}{x-1}\right)+\frac{1}{2}\)
Do x>1>0 nên ADBDDT Cauchy
\(\frac{x-1}{2}+\frac{2}{x-1}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}=2\)
Do đó B\(\ge2+\frac{1}{2}=\frac{3}{2}\)
Dấu = khi x=3
Nhầm B\(\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}=2\cdot2=4\)
Do đó B\(\ge4+\frac{1}{2}=\frac{9}{2}\)