Cho A= 11 mũ 9 + 11 mũ 8 +......+ 11 +1
a,chứng minh rằng A chia hết cho 5
B,tìm số dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
A = \(11^9\) + 11\(^8\) +...+ 11\(^2\) + 11 + 1
A = 11\(^{9}\) + 11\(^8\) +...+ 11\(^2\) + 11+ 11\(^0\)
Xét dãy số: 0; 1; 2; 3; ..; 8; 9
Dãy số trên là dãy số cách đều với khoảng cách là: 9 - 8 = 1
Số số hạng của dãy số trên là: (9 - 0) : 1 + 1 = 10
Vậy A là tổng của 10 hạng tử có tận cùng là 1
Từ lập luận trên ta có:
A = \(\overline{\ldots1}\) x 10 = \(\overline{\ldots0}\) ⋮ 5 (đpcm)
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại