phương trình \(x^2+y^3=z^4\) có nghiệm là các số nguyên tố x, y, z được không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
a/ntố X ở chu kì 3 \(\Rightarrow\)có 3 lớp e.nhóm IA \(\Rightarrow\)CHe kết thúc ở 3s\(^1\)\(\Rightarrow\)CHe là .\(\Rightarrow\) z=......
ntố Y có số e phân lớp P là 2\(\Rightarrow\) CHe kết thúc ở 2p\(^2\) \(\Rightarrow\) CHe là .....
ntố Z có 2Z+N=24.áp dụng công thức Z\(\le\) N\(\le\) 1,5Z.công vào mỗi vế 2Z đẻ có 2z+n=24\(\Rightarrow\) z=.....(có vài trường hợp bạn tự loại nha)
b/ từ phần a là tự suy ra đc mà!GOOD LUCK!
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
Các công thức tổng quát cho bộ số (x; y; z) hay còn gọi là bộ Pythagore:
Công thức 1:
x
=
n
,
y
=
1
2
(
n
2
−
1
)
,
z
=
1
2
(
n
2
+
1
)
, với n là số tự nhiên lẻ.
Công thức 2:
x
=
4
n
,
y
=
4
n
2
−
1
,
z
=
4
n
2
+
1
Công thức 3:
x
=
t
(
a
2
−
b
2
)
,
y
=
2
t
a
b
,
z
=
t
(
a
2
+
b
2
)
trong đó, t, a, b là các số nguyên dương bất kì sao cho a > b, a và b không có ước nguyên tố chung và có tính chẵn lẻ khác nhau.
Từ đó, ta có thể giải quyết được bài toán trên.
\(\Leftrightarrow x^y+y^x+x^3+y^3+1+3\left(x+y\right)\left(x+1\right)\left(y+1\right)=x^3+y^3+1+z\)
\(\Leftrightarrow x^y+y^x+3\left(x+y\right)\left(y+1\right)\left(x+1\right)=z\)
Do \(VT>3\Rightarrow z>3\Rightarrow z\) lẻ đồng thời z không chia hết cho 3
Nếu \(x;y\) đều lẻ hoặc đều chẵn \(\Rightarrow VT\) chẵn (không thỏa mãn)
\(\Rightarrow\) x và y có đúng 1 số chẵn, do vai trò của x; y như nhau, giả sử y chẵn \(\Rightarrow y=2\)
\(\Rightarrow x^2+2^x+9\left(x+2\right)\left(x+1\right)=z\)
- Nếu \(x>3\Rightarrow x^2\) chia 3 dư 1, đồng thời do x lẻ \(\Rightarrow x=2k+1\)
\(\Rightarrow2^x=2^{2k+1}=2.4^k\) chia 3 dư 2
\(\Rightarrow x^2+2^x\) chia hết cho 3 \(\Rightarrow VT\) chia hết cho 3 (không thỏa mãn)
\(\Rightarrow x\le3\Rightarrow x=3\Rightarrow z=197\) (thỏa mãn)
Vậy \(\left(x;y;z\right)=\left(3;2;197\right)\)
TH1 : z =2
=> VL
TH2 z le => z^4 dong du 1 mod 4
x^2 dong du 0 hoac 1 mod 4
y^3 dong du 0,1,3 mod 4
=> ko the co so nguyen to x,y,z