TÌM GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
- p lon nhat khi x = 7 , p nho nhat khi x = 6
- p lon nhat = 2554 , p nho nhat = 2014
dung khong ta ?
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
\(B=\dfrac{2x^2+2x+2}{2\left(x^2+1\right)}=\dfrac{x^2+1+x^2+2x+1}{2\left(x^2+1\right)}=\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2\left(x^2+1\right)}\ge\dfrac{1}{2}\)
\(B=\dfrac{2x^2+2x+2}{2\left(x^2+1\right)}=\dfrac{3\left(x^2+1\right)-x^2+2x-1}{2\left(x^2+1\right)}=\dfrac{3}{2}-\dfrac{\left(x-1\right)^2}{2\left(x^2+1\right)}\le\dfrac{3}{2}\)