K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$x^3+y^3=(x+y)^3-3xy(x+y)=2^3-3xy.2=8-6xy$

$=8-3.2xy=8-3[(x+y)^2-(x^2+y^2)]=8-3(2^2-34)=98$

----------------

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=34^2-\frac{1}{2}(2xy)^2$

$=34^2-\frac{1}{2}[(x+y)^2-(x^2+y^2)]^2=34^2-\frac{1}{2}(2^2-34)^2=706$

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

11 tháng 2 2018

Ta có: VT = ( x 3  +  x 2 y + x y 2  +  y 3 )(x - y)

      = ( x- y). ( x 3  +  x 2 y + x y 2  +  y 3 ).

      = x. ( x 3  +  x 2 y + x y 2  +  y 3  ) - y( x 3  +  x 2 y + x y 2  +  y 3 )

      =  x 4  +  x 3 y +  x 2 y 2  + x y 3 –  x 3 y –  x 2 y 2  – x y 3  –  y 4

      =  x 4  –  y 4  = VP (đpcm)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

22 tháng 8 2019

Ta có :

y và x là hai đại lượng tỉ lệ nghịch với nhau ⇒ y = a/x

Nên hệ số tỉ lệ a = x.y = 2.30 = 60

18 tháng 12 2019

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Đáp án A

19 tháng 8 2018

Theo đề bài ta có :

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Do đó ta có Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Giải bài 61 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Vậy x =16 ; y = 24 ; z =30

29 tháng 3 2017

x1 = 3; y1 = 6 nên hệ số tỉ lệ của y đối với x là 6 : 3 = 2

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:
a.

$x^3+y^3=(x+y)^3-3xy(x+y)=9^3-3.9.18=243$

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=[9^2-2.18]^2-2.18^2=1377$

Nếu $x\geq y$ thì:

$x^3-y^3=(x-y)(x^2+xy+y^2)$

$=|x-y|[(x+y)^2-xy]=\sqrt{(x+y)^2-4xy}[(x+y)^2-xy]$

$=\sqrt{9^2-4.18}(9^2-18)=189$

Nếu $x< y$ thì $x^3-y^3=-189$

b.

$A=(x+y)^2-6(x+y)+y-5$

$=(-9)^2-6(-9)+y-5=130+y$

Chưa đủ cơ sở để tính biểu thức.

11 tháng 7 2021

cảm ơn bnhihi

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`

3 tháng 8 2023

a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)

\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)

\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)

b) \(27x^3-54x^2+36x=9\)

\(\Rightarrow27x^3-54x^2+36x-9=0\)

\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)

\(\Rightarrow\left(3x-2\right)^3-1=0\)

\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)

mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)

\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)

3 tháng 8 2023

(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}

  27\(x^3\) - 54\(x^2\) + 36\(x\) = 9

27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1

(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1