so sanh A voi 1 biet A= 2^2019-(2^2018+2^2017+...+2^1+2^0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)(1)
\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)(2)
Từ(1) và (2)
\(\Rightarrow B>A\)
\(A=2^{2019}-2^{2018}-2^{2017}-...-2-1\)
\(A=2^{2019}-\left(2^{2018}+2^{2017}+...+2+1\right)=2^{2019}-B\)
Xét \(B=2^{2018}+2^{2017}+...+2+1\)
\(\Rightarrow2B=2^{2019}+2^{2018}+...+2^2+2\)
\(\Rightarrow2B-2^{2019}+1=2^{2018}+2^{2017}+...+2+1\)
\(\Rightarrow2B-2^{2019}+1=B\)
\(\Rightarrow B=2^{2019}-1\)
\(\Rightarrow A=2^{2019}-B=2^{2019}-\left(2^{2019}-1\right)=2^{2019}-2^{2019}+1=1\)
Vậy \(A=1\)
\(3a=3+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)
\(2a=3a-a=3-\frac{1}{3}-\frac{1}{3^{2019}}< 3\Rightarrow a< \frac{3}{2}\)
\(A=2^{2019}-\left(2^{2018}+2^{2017}+2^{2016}+.....+2^1+2^0\right)\)
Đặt: \(B=2^{2018}+2^{2017}+2^{2016}+....+2^1+2^0\)
\(\Rightarrow2B=\left(2^{2018}+2^{2017}+2^{2016}+...+2^1+2^0\right)\)
\(\Rightarrow2B-B=\left(2^{2019}+2^{2018}+2^{2017}+...+2^2+2\right)-\left(2^{2018}+2^{2017}+2^{2016}+...+2^1+2^0\right)\)
\(\Rightarrow B=2^{2019}-1\)
\(\Rightarrow A=2^{2019}-\left(2^{2018}+2^{2017}+2^{2016}+.....+2^1+2^0\right)\)
\(=2^{2019}-\left(2^{2019}-1\right)=2^{2019}+2^{2019}+1>1\)
đoạn cuối cùng bạn làm sai rồi