K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

Giải:

Dùng biến đổi tương đương chứng minh được:

\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>\) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)

\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)

\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy \(x=1\) hoặc \(x=-2\) thì phương trình trên là số chính phương

18 tháng 4 2017

dùng phương pháp hệ số bất định ý bạn gọi đa thức đó là bình phương của đa thức (x^2+ax+b)^2 rồi khai triển là ok

23 tháng 9 2021

81:9= 9

13 tháng 12 2022

Để A nguyên thì \(2x+3\in\left\{1;-1\right\}\)

=>\(x\in\left\{-1;-2\right\}\)

13 tháng 12 2022

\(\dfrac{1}{2x+3}\) \(\in\) Z \(\Leftrightarrow\)  1 \(⋮\) 2x + 2   

\(\Leftrightarrow\) 2x + 3 \(\in\) Ư(1) = [ -1; 1)

=> 2x  + 3 = -1 => x = -2;

2x + 3 =  = 1 => x = -1 

 x \(\in\) { -2; -1}

4 tháng 6 2018

a/ ta có: 

\(x\sqrt{2y-1}+y\sqrt{2x-1}=\sqrt{x}.\sqrt{2xy-x}+\sqrt{y}.\sqrt{2xy-y}\)

\(\le\frac{x+2xy-x}{2}+\frac{y+2xy-y}{2}=2xy\)

Dấu = xảy ra khi ...

4 tháng 6 2018

Khi gì

27 tháng 9 2019

a) x 2 và x  ≠  0

b) Rút gọn được Q = x + 1 2 x  

c) Thay x = 2017 (TMĐK) vào Q ta được Q = 1009 2017

27 tháng 3 2023

\(\dfrac{x^2+2x+1}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)

vậy để biểu thức là số nguyên thì

`2` phải chia hết cho `x-1`

`=>x-1` thuộc tập hợp ước của 2

mà `x` thuộc `Z` nên ta có bảng sau

x-11-12-2
x2(tm)0(tm)3(tm)-1(tm)

 

vậy \(x\in\left\{2;0;3;-1\right\}\)

 

B=(x+1)^2/(x+1)(x-1)=(x+1)/(x-1)

Để B nguyên thì x-1+2 chia hết cho x-1

=>\(x-1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{2;0;3\right\}\)