a) 2x : 8 = 25
b) 81 : 3x = 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số các số hạng trong A là: \(\left(25-1\right):1+1=25\) (số)
Tổng A bằng: \(\left(25+1\right)\cdot25:2=325\)
b) Số các số hạng trong B là: \(\left(50-2\right):2+1=25\) (số)
Tổng B bằng: \(\left(50+2\right)\cdot25:2=650\)
c) Số các số hạng trong C là: \(\left(81-1\right):4+1=21\) (số)
Tổng C bằng: \(\left(81+1\right)\cdot21:2=861\)
#Urushi
x - ( 81 + 5x ) = 19
=> x - 81 - 5x = 19
=> ( x - 5x ) - 81 = 19
=> -4x = 19 + 81
=> -4x = 100
=> x = 100 : ( -4 )
=> x = -25
2x - ( 8 + 3x ) = 92
=> 2x - 8 - 3x = 92
=> ( 2x - 3x ) = 8 + 92
=> -x = 100
=> x = -100
a) \(x^2-4x+4=25\\ \Rightarrow\left(x-2\right)^2=25\\ \Rightarrow\left[{}\begin{matrix}x-2=-5\\x-2=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
b) \(\left(5-2x\right)^2-16=0\\ \Rightarrow\left(5-2x\right)^2=16\\ \Rightarrow\left[{}\begin{matrix}5-2x=-4\\5-2x=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4,5\\0,5\end{matrix}\right.\)
c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\\ \Rightarrow\left(x-3\right)^3-\left(x-3\right)^3+9\left(x+1\right)^2=15\\ \Rightarrow9\left(x+1\right)^2=15\\ \Rightarrow\left(x+1\right)^2=\dfrac{5}{3}\\ \Rightarrow\left[{}\begin{matrix}x+1=-\sqrt{\dfrac{5}{3}}\\x+1=\sqrt{\dfrac{5}{3}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3+\sqrt{15}}{3}\\x=\dfrac{-3+\sqrt{15}}{3}\end{matrix}\right.\)
a)\(\Leftrightarrow\)\(x^2-4x-21=0\)
\(\Leftrightarrow\)\(x^2-7x+3x-21=0\)
\(\Leftrightarrow\)\(x(x-7)+3(x-7)=0\)
\(\Leftrightarrow\)\((x-7)(x+3)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{} x=7\\ x=-3 \end{array} \right.\)
b)\(\Leftrightarrow\)\((5-2x)^2-4^2=0\)
\(\Leftrightarrow\)\((5-2x-4)(5-2x+4)=0\)
\(\Leftrightarrow\)\((-2x+1)(-2x+9)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{} x=\dfrac{1}{2}\\ x=\dfrac{9}{2} \end{array} \right.\)
a,3x.(2x+3)-(2x+5).(3x-2)=8
x=1
b,5x(x+2)-x.(2x-7)-3x^2=81
x=81/17
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
\(a,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\\ b,\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow x=1\\ c,\Leftrightarrow\left(1-2x\right)^2-\left(3x-2\right)^2=0\\ \Leftrightarrow\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\\ \Leftrightarrow\left(3-5x\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-2\right)^3=-\left(5-2x\right)^3\\ \Leftrightarrow x-2=-\left(5-2x\right)=2x-5\\ \Leftrightarrow x=3\)
a) Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-1\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)
\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b,\(< =>25x^2+10x+1-25x^2+9-30=0\)
\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)
c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)
\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)
\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)
\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)
a: Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)
b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
\(\left(x^2-6x+8\right).\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x^2-2x-4x+8\right).\left(x^2+x+2x+2\right)=0\)
\(\Rightarrow[\left(x^2-2x\right)-\left(4x-8\right)].[\left(x^2+x\right)+\left(2x+2\right)]=0\)
\(\Rightarrow[x.\left(x-2\right)-4.\left(x-2\right)].[x.\left(x+1\right)+2.\left(x+1\right)]=0\)
\(\Rightarrow\left(x-4\right).\left(x-2\right).\left(x+2\right).\left(x+1\right)=0\)
Trường hợp 1: \(x-4=0\Rightarrow x=4\)
Trường hợp 2: \(x-2=0\Rightarrow x=2\)
Trường hợp 3: \(x+2=0\Rightarrow x=-2\)
Trường hợp 4: \(x+1=0\Rightarrow x=-1\)
\(x^4-4=0\)
\(\Rightarrow\left(x^2\right)^2-2^2=0\)
\(\Rightarrow\left(x^2-2\right).\left(x^2+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-2=0\\x^2+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=2\\x^2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
\(y^8-81=0\)
\(\Rightarrow\left(y^4\right)^2-9^2\)
\(\Rightarrow\left(y^4-9\right).\left(y^4+9\right)\)
\(\Rightarrow[\left(y^2\right)^2-3^2].\left(y^4+9\right)\)
\(\Rightarrow\left(y^2-3\right).\left(y^2+3\right).\left(y^4+9\right)\)
Trường hợp 1: \(y^2-3=0\Rightarrow y=\sqrt{3}\)
Trường hợp 2: \(y^2+3=0\Rightarrow y=-\sqrt{3}\)
Trường hợp 3: \(y^4+9=0\Rightarrow y^4=-9\) (Loại)
\(\left(x+2\right).\left(2x^2-3x-9\right)=0\)
\(\Rightarrow\left(x+2\right).\left(2x^2-6x+3x-9\right)=0\)
\(\Rightarrow\left(x+2\right).[\left(2x^2-6x\right)+\left(3x-9\right)]=0\)
\(\Rightarrow\left(x+2\right).[2x.\left(x-3\right)+3.\left(x-3\right)]=0\)
\(\Rightarrow\left(x+2\right).\left(x-3\right).\left(2x+3\right)=0\)
Trường hợp 1: \(x+2=0\Rightarrow x=-2\)
Trường hợp 2: \(x-3=0\Rightarrow x=3\)
Trường hợp 3: \(2x+3=0\Rightarrow x=\frac{-3}{2}\)
a) 16x2 - 9
= ( 4x )2 - 32
= ( 4x - 3 )( 4x + 3 )
b) 9a2 - 25b4
= ( 3a )2 - ( 5b2 )2
= ( 3a - 5b2 )( 3a + 5b2 )
c) 81 - y4
= 92 - ( y2 )2
= ( 9 - y2 )( 9 + y2 )
= ( 32 - y2 )( 9 + y2 )
= ( 3 - y )( 3 + y )( 9 + y2 )
d) ( 2x + y )2 - 1
= ( 2x + y )2 - 12
= ( 2x + y - 1 )( 2x + y + 1 )
e) ( x + y + z )2 - ( x - y - z )2
= [ x + y + z - ( x - y - z ) ][ x + y + z + ( x - y - z ) ]
= [ x + y + z - x + y + z ][ x + y + z + x - y - z ]
= [ 2y + 2z ].2x
= 2[ y + z ].2x
= 4x[ y + z ]
a) 2x : 8 = 25
2x : 8 = 32
2x=32.8
2x=256
2x=28
=>x=8
b) 81 : 3x = 9
3x=81:9
3x=9
3x=33
=>x=3