chứng minh rằng
a,S=5 + \(5^2\)+ \(5^3\)+.......+\(5^{99}\)+\(5^{100}\)\(⋮\)6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 599 + 5100 )
= 5 ( 1 + 5 ) + 53 ( 1 + 5 ) + ..... + 599 ( 1 + 5 )
= 5.6 + 53.6 + .... + 599.6
= 6 ( 5 + 53 + ... + 599 )
Vì 6 chia hết cho 6 nên 6 ( 5 + 53 + ... + 599 ) chia hết cho 6
Hay S chia hết cho 6 ( đpcm )
Ta có A=5+52+53+...+599+5100=(5+52)+(53+54)+...+(599+5100)
A=5.(1+5)+53.(1+5)+599.(1+5)
A=5.6+53.6+...+599.6
A=6.(5+53+...+599) sẽ chia hết cho 6
mik nha bài nay mik làm HSG lớp 6 quen rùi!!!!!
Ta có : 5 + 52 + 53 + 54 + 599 + 5100 = ( 5+52 ) + ( 53 + 54 ) + (599 + 5100 ) = 5(1+5) + 53 ( 1+5) + 599(1+5 )= 6(5+53+ 599) chia hết cho 6 ( đpcm)
A=5+52+...+599+5100
=(5+52)+...+(599+5100)
=5.(1+5)+...+599.(1+5)
=5.6+...+599.6
=6.(5+...+599) chia hết cho 6 (dpcm)
Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi
Chúc bạn học giỏi nha!!
\(A=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)
\(B=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+...+2^{96}.31\)
\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{59}.4\)
\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+...+3^{58}.13\)
\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)
Câu a mk ko hiểu gì nha xl bn nhìu
b)1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=(-1) . 50
=(-50)
c) 5 + 52 + 53 + ...+ 599 + 5100
=(5+52)+(53+54)+....+(599+5100)
=30+52(5+52)+...+598(5+52)
=30.1+52.30+.....+598.30
=30(1+52+...+598) chia hết cho 6
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
Vì tổng S có 100 SH
Mà 100 chia hết cho 2
Do đó ta có:
5+5^2+5^3+....+5^99+5^100
=(5+5^2)+(5^3+5^4)+...+(5^99+5^100)
=5.(1+5)+5^3.(1+5)+...+5^99.(1+5)
=5.6+5^3.6+...+5^99.6
=6.(5+5^3+...+5^99)
Vì 6 chia hết cho 6
Nên 6.(5+5^3+...+5^99) cũng chia hết cho 6
Vậy S chia hết cho 6
\(S=5+5^2+5^3+5^4+....+5^{99}+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\)
\(=\left[5\left(1+5\right)\right]+\left[5^3\left(1+5\right)\right]+....+\left[5^{99}\left(1+5\right)\right]\)
\(=5\cdot6+5^3\cdot6+....+5^{99}\cdot6\)
\(=6\left(5+5^3+....+5^{99}\right)\)
\(\Rightarrow S⋮6\)