K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

Số số hạng của tổng B là:

\(\frac{\left(2015-1\right)}{1}+1=2015\)(số hạng)

\(B=\frac{\left(1+2015\right)\cdot2015}{2}=2031120\)

\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+...+\left(2013^2-2014^2\right)+2015^2\)

\(A=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+4060225\)

Số số hạng của tổng A thuộc nguyên âm là:

\(\frac{2014}{2}=1007\)(số hạng)

\(A=\frac{\left(-3\right)+\left(-4027\right)\cdot1007}{2}+4060225\)

\(A=\left(-2029105\right)+4060225\)

\(A=2031120\)

Mà \(2031120=2031120\)

\(\Rightarrow A=B\)

4 tháng 7 2019

\(A=1^2-2^2+3^2-4^2+...-2014^2+2015^2\)

\(A=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)

\(A=1+\left(3-2\right).\left(2+3\right)+\left(4-5\right).\left(4+5\right)+...+\left(2015-2014\right).\left(2014+2015\right)\)

\(A=1+2+3+4+...+2015=B\)

25 tháng 1 2017

chị kết bạn với em nha gửi lời kết bn với em nhé

25 tháng 1 2017

j zậy em hả 

14 tháng 2 2020

\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)

\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)

14 tháng 2 2020

\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)

\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)

10 tháng 3 2019

1/2 x 2/3 x 3/4 x 4/5 x 5/6 x ... x 2013/2014 x 2014/2015 x 2015/2016
= 1/2016 (giản ước hết ta đc mẫu số đầu tiên và tử số cuối cùng)

10 tháng 3 2019

   1/2 × 2/3 × 3/4 × .... × 2014/2015 × 2015/2016

= 1 × 2 × 3 × ... × 2014 × 2015 / 2 × 3 × 4 × ... × 2015 × 2016 ( Nhân tử với tử/ mẫu với mẫu )

= 1/ 2016 

13 tháng 2 2020

a, s1 có 2015 hạng tử

=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008

16 tháng 2 2020

Lời giải:

a,S1=1+(-2)+3+(-4)+...+(-2014)+2015

=(1-2)+(3-4)+...+(2013-2014)+2015

=-1+(-1)+...+(-1)+2015

=-1.1007+2015

=(-1007)+2015

=1008

b,S2=(-2)+4+(-6)+8+...+(-2014)+2016

=(-2+4)+(-6+8)+...+(-2014+2016)

=2+2+...+2

=2.504

=1008

c,S3=1+(-3)+5+(-7)+...+2013+(-2015)

=(1-3)+(5-7)+...+(2013-2015)

=(-2)+(-2)+...+(-2)

=(-2).504

=-1008

d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016

=(-2015+2015)+...+0+2016

=0+...+0+2016

=2016

STUDY WELL !

26 tháng 3 2020

a. \(\left[\left(-2\right)^5.2014-4^2.2015\right]-\left(-2015^0+3^2-2^3\right)\)

\(=-64448-32240+1-9+8=-96688\)

27 tháng 3 2020

Tớ lm lại nhé:

SBC = 9-1/2-1/3-1/4-...-1/10

=1+1+...+1(9 số 1) -1/2-1/3-1/4-1/5-...-1/10.

=(1-1/2)+(1-1/3)+...+(1-1/10)

=1/2+2/3+...+9/10= SC

=> phép chia có thương là 1(vì SBC=SC)

15 tháng 11 2018

\(C=\left(1^2-2^2\right)+\left(3^2-4^2\right)+....+\left(2013^2-2014^2\right)+2015^2\)

\(C=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+....+\left(2013-2014\right)\left(2013+2014\right)+2015^2\)

\(C=-\left(1+2\right)-\left(3+4\right)-....-\left(2013+2014\right)+2015^2\)

\(C=-\left(1+2+3+4+...+2014\right)+2015^2\)

\(C=-\dfrac{\left(2014+1\right)2014}{2}+2015^2\)

\(C=-2015.1007+2015^2\)

\(C=2015\left(2015-1007\right)=2015.1008\)