Chứng minh rằng 1994!-1 có các ước lớn hơn 1994
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 1 công thức là:Các số có chữ số tận cùng là 3,7,9 khi nâng lên lũy thừa 4 thì được chữ số tận cùng bằng 1
1.
\(3^{1999}-7^{1997}\)
Tách mũ thành 1 tích nhân vs 4
=\(3^{4.499+3}-7^{4.499+1}\)
=\(3^{4.499}.3^3-7^{4.499}.7\)
=\(\left(3^4\right)^{499}.\left(...7\right)-\left(7^4\right)^{499}.\left(...7\right)\)
=\(\left(...1\right)^{499}.\left(...7\right)-\left(...1\right)^{499}.\left(...7\right)\)
Lúc này là mấy phân số có lũy thừa thì bạn bỏ lủy thừa đi vì nâng lên bao nhiêu vẫn có chữ số tận cùng là vậy thôi
=(...1) . (...7) - (...1) . (...7)
Nhân mấy chữ số tận cùng lại
=(...7) - (...7)
=(...0)
Chữ số tận cùng bằng 0 thì số đó chia hết cho 5
* 1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1
=> 1994^100 - 1 chia hết cho 1993
hiển nhiên 1994^100 > 1993
=> 1994^100 - 1 là hợp số
* ta cũng có thể dùng khai triển nhị thức:
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1)
=> 1994^100 - 1 là hợp số
--------------
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì???
có lẽ ý người ra đề muốn giải theo cách khác!!!
1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố
1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1
=> 1994^100 - 1 chia hết cho 1993
hiển nhiên 1994^100 > 1993
=> 1994^100 - 1 là hợp số
* ta cũng có thể dùng khai triển nhị thức:
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1)
=> 1994^100 - 1 là hợp số
--------------
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì???
có lẽ ý người ra đề muốn giải theo cách khác!!!
1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố
Bài 2 :
Với p là số nguyên tố lớn hơn 3 => p chỉ có dạng hoặc 3k + 1 hoặc 3k + 2
+ Nếu p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\)3 và lớn hơn 3 là hợp số ( loại )
Vì p ko có dạng 3k + 1 nên p có dạng 3k + 2
Với p = 3k + 2 thì 4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 là hợp số
Vậy ...
Bài 1 :
Ta có \(1994^{100}-1,1994^{100},1994^{100}+1\) là 3 số tự nhiên liên tiếp nên phải có 1 số chia hết cho 3 mà \(1994^{100}\)có tổng các chữ số là \(1+9+9+4=123\)không chia hết 3 nên \(1994^{100}\)không chia hết cho 3 nên trong 2 số còn lại ít nhất có một số chia hết cho 3 ,số đó không thể là số nguyên tố
Vậy \(1994^{100}-1\)và \(1994^{100}+1\)không thể đồng thời là số nguyên tố
Bài 2
Do P là số nguyên tố lớn hơn 3 nên 4p không chia hết cho 3 ,tương tự \(4p+2=2\left(2p+4\right)\)cũng không chia hết cho 3
Mà \(4p,4p+1,4p+2\)là 3 số tự nhiên liên tiếp nên ít nhất phải có 1 số chia hêt cho 3 .Do đó \(4p+1⋮3\)mà \(4p+1>13\)nên \(4p+1\)là hợp số
Chúc bạn học tốt ( -_- )
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\frac{a^{1994}}{b^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)(1)
\(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(2)
từ (1) và (2) => \(\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\left(đpcm\right)\)
\(\)
1994100 = (19942)50 = (...6) 50 = ...6 (vì số có tận cùng là 6 khi nâng lên lũy thừa mũ bất kì luôn cho tận cùng là 6)
=> 1994100 - 1 = ...6 - 1 = ...5
Mà ...5 chia hết cho 5
=> 1994100 là hợp số
=> 1994100-1 và 1994100+1 không thể đồng thời là số nguyên tố