Tìm giá trị nhỏ nhất của biểu thức . P= \(\frac{1-\sqrt{x}+x}{\sqrt{x}}\) với x > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô-si ta có :
\(P=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}\)
\(=\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{xy}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{xy}}\)
\(\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}\left(x+y-\frac{x+y}{2}\right)}{\sqrt{xy}}\)
\(=\frac{x+y}{\sqrt[4]{xy}}\ge\frac{x+y}{\sqrt{\frac{x+y}{2}}}=\frac{1}{\sqrt{\frac{1}{2}}}=\sqrt{2}\)
Dấu "=" khi x = y = 1/2
ta có: \(4x^2+9x+18\sqrt{x}+9=4x^2+9\left(\sqrt{x}+1\right)^2\),\(4x\sqrt{x}+4x=4x\left(\sqrt{x}+1\right)\)
Đặt \(a=x,b=\sqrt{x}+1\)ta có:
\(A=\frac{4a^2+9b^2}{4ab}+\frac{4ab}{4a^2+9b^2}=t+\frac{1}{t},t=\frac{4a^2+9b^2}{4ab}\)
có \(\frac{4a^2+9b^2}{4ab}=t\Rightarrow4a^2-t.4ab+9b^2=0\Leftrightarrow4.\left(\frac{a}{b}\right)^2-4t.\frac{a}{b}+9=0,\)do a khác 0.
Đặt \(\frac{a}{b}=y\Rightarrow4y^2-t.4y+9=0\), \(\Delta=16t^2-36\ge0\Leftrightarrow t\ge\frac{3}{2}\left(t>0\right)\)
xét \(f\left(t\right)=t+\frac{1}{t}\left(t\ge\frac{3}{2}\right)\)
lấy \(\frac{3}{2}< t_1< t_2\)
\(\Rightarrow f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(\frac{t_1.t_2-1}{t_1.t_2}\right)< 0\)
suy ra với t càng tăng thì f(t) càng lớn vậy min \(f\left(t\right)=\frac{3}{2}+\frac{2}{3}=\frac{13}{6}\)
các em tự tìm x nhé.
bài này bạn áp dụng BĐT cô si cko 2 số dương là đc.
đáp án: Min A= 2
\(a,A=\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=3\sqrt{3}+\frac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\left(\sqrt{3}-1\right)\)
\(=3\sqrt{3}+\frac{2\sqrt{3}+4}{3-4}-\sqrt{3}+1\)
\(=3\sqrt{3}-2\sqrt{3}-4-\sqrt{3}+1\)
\(=-3\)
\(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
b, Ta có \(B< A\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< -3\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}+3< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-1+3\sqrt{x}}{\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{4\sqrt{x}-1}{\sqrt{x}}< 0\)
\(\Leftrightarrow4\sqrt{x}-1< 0\left(Do\sqrt{x}>0\right)\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{4}\)
\(\Leftrightarrow0< x< \frac{1}{2}\)(Kết hợp ĐKXĐ)
Vậy ...
a) Thay x=4 zô là đc . ra kết quả \(\frac{7}{6}\)là dúng
b) \(B=\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)
\(=\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)
\(=>P=A.B=\frac{3\sqrt{x}+1}{x+\sqrt{x}}.\frac{3\left(x+\sqrt{x}\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}=\frac{3}{3\sqrt{x}-1}\)
c) xét \(\frac{1}{P}=\frac{3\sqrt{x}-1}{3}\)
do \(\sqrt{x}\ge0=>3\sqrt{x}-1\ge-1\)\(=>\frac{3\sqrt{x}-1}{3}\ge-\frac{1}{3}\)
\(=>\frac{1}{P}\ge-\frac{1}{3}\)
dấu = xảy ra khi x=0
zậy ..
\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\) \(\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\)\(\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(E=\frac{x}{\sqrt{x}-1}\)
b) \(E>1\Leftrightarrow\frac{x}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\sqrt{x}-1>0\) vì tử của phân số luôn \(\ge0\forall x\ge0\)
\(\Rightarrow x>1\)
kết hợp với ĐKXĐ \(x\ge0\Rightarrow x>1\)
vậy \(x>1\) thì \(E>1\)
\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)
Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)
Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)
\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)
Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)
\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)
Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)