Cho a,b,c khác 0 và a^2 =bc . CMr a^2 + c^2 / b^2 + a^2 = c/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Ta có \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{\left(bc\right)^3+\left(ab\right)^3+\left(ac\right)^3}{\left(abc\right)^2}\)
Ta lại có (a+b+c)2=a2+b2+c2
=>a2+b2+c2+2(ab+bc+ac)= a2+b2+c2
=> 2(ab+bc+ac)=0=> ab+bc+ac=0
Ta cần chứng minh bài toán phụ x+y+z=0 thì
x3+y3+z3=3xyz
Ta thấy x+y+z=0=> x+y=-z
=> (x+y)3=-z3 => x3+3xy(x+y)+y3=-z3
=> x3+y3+z3=-3xy(x+y)=-3xy.(-z)=3xyz
Áp dụng vào bài toán ta có
ab+bc+ac=0 => (ab)3+(bc)3+(ac)3=3(abc)2
=> \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
=> đpcm
Ta có:a2 = bc \(\Rightarrow\frac{a}{b}=\frac{c}{a}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{a^2}=\frac{a}{b}.\frac{c}{a}=\frac{c}{b}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{b^2}=\frac{c^2}{a^2}=\frac{a^2+c^2}{b^2+a^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{c}{b}\left(đpcm\right)\)
cho c^2 +2(ab -ac -bc ) =0 và b khác c, a+b khác 0. Chứng minh a^2 +(a-c)^2 /b^2+(b-c)^2 = a-c / b-c
\(a^2+b^2+c^2+2ab-2ac-2bc=a^2+b^2\)
\(\Rightarrow\left(a+b-c\right)^2=a^2+b^2\)
\(\Rightarrow\hept{\begin{cases}a^2=\left(a+b-c\right)^2-b^2=\left(a+b-c-b\right)\left(a+b-c+b\right)=\left(a-c\right)\left(a+2b-c\right)\\b^2=\left(a+b-c\right)^2-a^2=\left(a+b-c-a\right)\left(a+b-c+a\right)=\left(b-c\right)\left(2a+b-c\right)\end{cases}}\)
\(a^2+\left(a-c\right)^2=\left(a-c\right)\left(a+2b-c\right)+\left(a-c\right)^2\)
\(=\left(a-c\right)\left(a+2b-c+a-c\right)=2\left(a-c\right)\left(a+b-c\right)\)
\(b^2+\left(b-c\right)^2=\left(b-c\right)\left(2a+b-c\right)+\left(b-c\right)^2\)
\(=\left(b-c\right)\left(2a+b-c+b-c\right)=2\left(b-c\right)\left(a+b-c\right)\)
Vậy \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{2\left(a-c\right)\left(a+b+c\right)}{2\left(b-c\right)\left(a+b+c\right)}=\frac{a-c}{b-c}\)
thay a^2=bc ta có:
\(\frac{a^2+c^2}{b^2+a^2}=\frac{bc+c^2}{b^2+bc}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\left(dpcm\right)\)