Tìm giá trị lớn nhất của các biểu thức sau
a) \(A=11-10x-x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
\(a,A=x^2-6x+11=\left(x-3\right)^2+2\)\(\Leftrightarrow Amin=2\)
Dấu = xảy ra \(\Leftrightarrow x=3\)
\(2x^2+10x-1=2\left(x^2+5x-\frac{1}{2}\right)=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{27}{4}\right)=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)
\(\Rightarrow Bmin=\frac{-27}{2}.''=''\Leftrightarrow x=\frac{-5}{2}\)
a) \(x^2\)\(+3x+7\)
=\(x^2\)\(+2.x.\frac{3}{2}\)\(+\frac{9}{4}\)\(+\frac{19}{4}\)
=\(\left(x+\frac{3}{2}\right)^2\)\(+\frac{19}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\)\(\ge0\)
Nên \(\left(x+\frac{3}{2}\right)^2\)\(+\frac{19}{4}\)\(\ge\frac{19}{4}\)
Dấu "=" xảy ra khi:
\(x+\frac{3}{2}\)\(=0\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy GTNN của \(x^2\)\(+3x+7\) là \(\frac{19}{4}\) khi \(x=-\frac{3}{2}\)
b) \(-9x^2+12x-15\)
=\(-\left(9x^2-12x+15\right)\)
=\(-\left(\left(3x\right)^2-2.3x.2+4+11\right)\)
=\(-\left(\left(3x-2\right)^2+11\right)\)
=\(-\left(3x-2\right)^2-11\)
Vì \(\left(3x-2\right)^2\)\(\ge0\)
Nên \(-\left(3x-2\right)^2-11\le-11\)
Dấu "=" xảy ra khi:
\(3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
Vậy GTLN của \(-9x^2+12x-15\) là \(-11\) khì \(x=\frac{2}{3}\)
c) \(11-10x-x^2\)
=\(-\left(x^2+10x-11\right)\)
=\(-\left(x^2+2.x.5+25-36\right)\)
=\(-\left(\left(x+5\right)^2-36\right)\)
=\(-\left(x+5\right)^2+36\)
Vì \(\left(x+5\right)^2\ge0\)
Nên \(-\left(x+5\right)^2+36\le36\)
Dấu "=" xảy ra khi:
\(x+5=0\)
\(\Rightarrow x=-5\)
Vậy GTLN \(11-10x-x^2\) là \(36\) khi \(x=-5\)
d)\(x^4+x^2+2\)
=\(\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
=\(\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x^2+\frac{1}{2}\right)^2\ge0\)
Nên \(\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Dấu "=" xảy ra khi:
\(x^2+\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{\sqrt{2}}\)
Vậy GTNN của \(x^4+x^2+2\) là \(\frac{7}{4}\) khi \(x=\frac{1}{\sqrt{2}}\)
a) \(x^2+3x+7=x^2+2.1,5x+1,5^2+4,75=\left(x+1,5\right)^2+4,75\ge4,75\)
Đẳng thức xảy ra khi : \(x+1,5=0\Rightarrow x=-1,5\)
Vậy giá trị nhỏ nhất của x2 + 3x + 7 là 4,75 khi x = -1,5
b) \(-9x^2+12x-15=-\left(9x^2-12x+15\right)=-\left[\left(3x\right)^2-2.2.3x+2^2+11\right]\)
\(=-\left[\left(3x-2\right)^2+11\right]=-\left(3x-2\right)^2-11\le-11\)
Đẳng thức xảy ra khi : \(3x-2=0\Rightarrow x=\frac{2}{3}\)
Vậy giá trị lớn nhất của -9x2 +12x - 15 là -11 khi \(x=\frac{2}{3}\)
c) \(11-10x-x^2=-x^2-10x+11=-\left(x^2+10x-11\right)=-\left(x^2+2.5x+5^2-36\right)\)
\(=-\left[\left(x+5\right)^2-36\right]=-\left(x+5\right)^2+36\le36\)
Đẳng thức xảy ra khi : \(x+5=0\Rightarrow x=-5\)
Vậy giá trị lớn nhất của 11 - 10x -x2 là 36 khi x = -5.
A = x2 - 6x + 11
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTNN của A = 3
B = 2x2 + 10x - 1
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTNN của B = \(-\frac{5}{2}\)
C = 5x - x2
=> C = -x2 + 5x
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTLN của C = \(\frac{5}{2}\)
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5