K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

Theo ví dụ trên ta có:

⇒ n -1 chia hết cho n2 -n +1

⇒ n(n-1)   chia hết cho n2 -n +1

⇒ n2 -n     chia hết cho n2 -n +1

⇒ (n2 -n +1) -1  chia hết cho n2 -n +1

⇒ 1 chia hết cho  n2 -n +1

Có hai trường hợp

n2 -n +1 =1 ⇔ n( n -1) =0 ⇔ n=0; n=1. Các giá trị này thoả mãn đề bài.

n2 -n +1= -1 ⇔ n2 -n +2 =0 không tìm được giá trị của n

Vậy n= 0; n =1 là hai số phải tìm

15 tháng 10 2018

 Khai triển n^5 + 1 = (1 + n)( n^4 - n^3 + n^2 - n + 1) 
n^3 + 1 = (n + 1)( n^2 - n + 1) 
=> n khác -1 để pháp chia có nghĩa 
Để n^5 + 1 chia hết cho n^3 + 1 thì: 
n^4 - n^3 + n^2 - n + 1 chia hết cho n^2 - n + 1 
n^2 ( n² + n + 1) + 1 - n chia hết cho n^2 - n +1 

=> 1 - n chia hết cho n² - n + 1 thì pt trên mới xảy ra chia hết 

1 - n chia hết cho n² - n + 1 
(-n)(1 - n) chia hết cho n² - n + 1 
n² - n + 1 - 1 chia hết cho n² - n + 1 

Để pt trên chia hết thì 1 chia hết cho n² - n + 1 
=> n² - n + 1 = 1 => n = 0;1 
n² - n + 1 = -1 => n² - n + 2 = 0 ( vô nghiệm, tự c/m) 

Vậy với n = 0;1 thì

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

11 tháng 11 2021

\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)

\(\Leftrightarrow-n^3+n⋮n^3+1\)

\(\Leftrightarrow n=1\)

22 tháng 8 2021

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

22 tháng 8 2021

 n3−n⋮3∀n∈Z

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

27 tháng 8 2017

13 tháng 2 2019

Ở đây, ta có thực hiện đặt phép chia như câu 1 để tìm số dư và tìm điều kiện giá trị của n để thỏa mãn đề bài. Nhưng bài này ta làm cách biến đội như sau:

11 tháng 4 2019

-2.

-1.

0.

1.

2.

3.

4.

5.

6

=0

7 tháng 1 2018

a) Gợi ý: phân tích 50 n + 2   -   50 n + 1 = 245.10. 50 n .

b) Gợi ý: phân tích n 3  - n = n(n - 1)(n +1).

13 tháng 2 2017

1/n=6

2/n=0