K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=a^3+b^3+c^3-a-b-c

=a^3-a+b^3-b+c^3-c

=a(a-1)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

Vì a;a-1;a+1 là 3 số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

Vì b;b-1;b+1 là 3 số liên tiếp

nên b(b-1)(b+1) chia hết cho 3!=6

Vì c;c-1;c+1 là 3 số liên tiếp

nên c(c-1)(c+1) chia hết cho 3!=6

=>A chia hết cho 6

DD
27 tháng 10 2021

\(A=2^1+2^2+2^3+...+2^{2010}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+...+2^{2010}\)

\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

25 tháng 11 2023

A=21+22+23+...+22010

=(21+22)+(23+24)+...+(22009+22010)=(21+22)+(23+24)+...+(22009+22010)

=2(1+2)+23(1+2)+...+22009(1+2)=2(1+2)+23(1+2)+...+22009(1+2)

=3(2+23+...+22009)⋮3=3(2+23+...+22009)3

�=21+22+23+...+22010A=21+22+23+...+22010

=(21+22+23)+(24+25+26)+...+(22008+22009+22010)=(21+22+23)+(24+25+26)+...+(22008+22009+22010)

=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)

=7(2+24+...+22008)⋮7=7(2+24+...+22008)7

14 tháng 10 2019

 \(10^6\) tận cùng là 0 \(=>10^6+2\) tận cùng là 2 \(=>10^6+2\) chia hết cho 2

DD
8 tháng 10 2021

\(A=2+2^2+2^3+...+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(=3\left(2+2^3+...+2^9\right)⋮3\)

\(A=2+2^2+2^3+...+2^{10}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)

\(=\left(2+2^6\right).31⋮31\)