K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2022

Bổ sung đề: a*b=1

\(a+b>=2\sqrt{ab}=2\)

19 tháng 1 2021

a. Vì 2 điểm B và C thuộc tia Ax(gt)

Suy ra:  AC= AB + BC

Thay số: AC = 7+2=9

Vậy AC =9 cm

b. Làm tương tự chỉ cần thay AB=a  BC=b thôi

20 tháng 1 2021

cảm ơn bạn haha

16 tháng 2 2017

7 tháng 9 2017

A) a2+b2+c2+ab+bc+ca>=0 (*)

<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0

<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0

<=> (a+b)2+(b+c)2+(c+a)2>=0

BĐT cuối luôn đúng với mọi a,b,c 

Vậy BĐT (*) đc cm

Phần B cũng tương tự nhé

7 tháng 9 2017

a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2

Mà \(\left(a+b+c\right)^2\ge0\forall x\)

Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)

b) hình như sai đề rồi bạn à !

17 tháng 10 2022

\(\Leftrightarrow a+b-2\sqrt{ab}>=0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)

23 tháng 1 2019

đề bỏ số 2 nha bạn

Áp dụng BĐT Cauchy -  Schwarz, ta có :

\(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)  

Tương tự , \(\frac{b}{ac}+\frac{c}{ab}\ge\frac{2}{a}\)\(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\)

Cộng từng vế BĐT, ta được : 

\(2.\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

23 tháng 1 2019

Thank bạn

6 tháng 9 2016

a)\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow a+b-2\sqrt{ab}\ge0\)

\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x

->Đpcm

2 phần kia mai tui lm nốt cho h đi ngủ

AH
Akai Haruma
Giáo viên
18 tháng 12 2021

Đề sai. Bạn coi lại đề.

6 tháng 4 2018

\(pt\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)