K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

a/d bunhiacopxki co:

\(S^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-2+y-3\right)=2\cdot1=2\)

\(\Rightarrow S\le\sqrt{2}\)

Dấu ''='' xảy ra khi \(x=\dfrac{5}{2};y=\dfrac{7}{2}\)

Vậy GTLN của S = \(\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)

20 tháng 10 2018

rõ hơn đc k bạn mik đọc k hiểu

21 tháng 10 2016

Áp dụng bunhiacopxki ta có

\(A^2\)\(\le\)(1+1)(x-2+y-3)=2(x+y-5)=2(vì x+y=6)\(\Rightarrow\)A\(\le\)\(\sqrt{2}\)

dấu = xảy ra\(\Leftrightarrow\)x=\(\frac{23}{8}\).y=\(\frac{25}{8}\)vì x\(\ge\)2......            y\(\ge\)3

18 tháng 6 2018

Toán lớp 9 nha

18 tháng 6 2018

Bạn ghi rõ GTLN là gì đi

21 tháng 10 2018

Where is "y"? Do vậy mình sẽ sửa đề nhé! Vả lại bài này

Tìm tìm GTLN \(P=\sqrt{x-2}+\sqrt{y-3}\) biết  x + y = 6

ĐK: \(\hept{\begin{cases}\sqrt{x-2}\ne\sqrt{2}\\\sqrt{y-3}\ne\sqrt{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ne4\\y\ne5\end{cases}}\)

Ta có: \(P=\sqrt{x-2}+\sqrt{y-3}\)

\(\Rightarrow P^2=\left(\sqrt{x-2}\right)^2+\left(\sqrt{y-3}\right)^2\)

\(P^2=x-2+y-3=\left(x+y\right)-\left(2+3\right)\)

Thay x + y = 6 vào,ta có: \(P^2=6-5=1\Leftrightarrow\hept{\begin{cases}P=1\\P=-1\end{cases}}\)

Mà đề bài là tìm GTLN nên P = 1

Dấu "=" xảy ra \(\Leftrightarrow x+y=6\)

Vậy \(P_{max}=1\Leftrightarrow x+y=6\)

21 tháng 10 2018

Woa dung la tu duy cua mot huyen thoai OLM that khac biet.

NV
5 tháng 8 2021

\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)

\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)

\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

9 tháng 2 2020

+ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-3\\y\ge-4\end{matrix}\right.\)

\(gt\Rightarrow x+y=6\left(\sqrt{x+3}+\sqrt{4+y}\right)\le6\sqrt{2\left(x+y+7\right)}\)

\(\Rightarrow\left(x+y\right)^2\le72\left(x+y+7\right)\)

\(\Rightarrow\left(x+y\right)^2-72\left(x+y\right)-504\le0\)

\(\Rightarrow\left(x+y-36\right)^2\le1800\Rightarrow P\le36+30\sqrt{2}\)

max \(P=36+30\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+3=y+4\\x+y=36+30\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{37}{2}+15\sqrt{2}\\y=\frac{35}{2}+15\sqrt{2}\end{matrix}\right.\)

+ \(x+y=6\left(\sqrt{x+3}+\sqrt{y+4}\right)\)

\(\Rightarrow\left(x+y\right)^2=36\left(x+y+7+2\sqrt{\left(x+3\right)\left(y+4\right)}\right)\)

\(\Rightarrow\left(x+y\right)^2-36\left(x+y\right)-252=72\sqrt{\left(x+3\right)\left(y+4\right)}\ge0\)

\(\Rightarrow\left(x+y-42\right)\left(x+y+6\right)\ge0\Rightarrow x+y\ge42\)

Min \(P=42\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+3\right)\left(y+4\right)}=0\\x+y=42\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=46\\y=-4\end{matrix}\right.\end{matrix}\right.\)

27 tháng 8 2019

ĐKXĐ : \(x\ge2;y\ge3\)

\(\Rightarrow S=\sqrt{x-2}+\sqrt{y-3}\ge1\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=2;y=4\\y=3;x=3\end{cases}}\)

30 tháng 4 2018

Áp dụng BĐT bu-nhi-a , ta có \(\left(\sqrt{x+3}+2\sqrt{y+3}\right)^2\le\left(1+2\right)\left(x+3+2y+6\right)\le36\)

=> \(S\le6\)

dấu = xảy ra <=> x=y=1

27 tháng 8 2017

Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)=\(\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\) = l x+2 l + l 2-x l \(\ge\) l x+2+2-x l = l 4 l = 4

Dấu " = " xảy ra khi và chỉ khi

(x+2)(2-x) \(\ge\)0

<=> x+2 \(\ge\)0 và 2-x \(\ge\) 0

hoặc x+2 \(\le\)0 và 2-x \(\le\)0

<=> x \(\ge\)-2 và x\(\le\)2

hoặc x\(\le\)-2 và x\(\ge\)2

<=> -2\(\le\)x\(\le\)2

vậy GTNN của Q = 4 khi -2\(\le\)x\(\le\)2

27 tháng 8 2017

câu b chỗ x - 3 sửa lại là y - 3