K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

\(\sqrt{3}+\sqrt{15}< \sqrt{5}+\sqrt{16}=\sqrt{5}+4\)

b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

Bài 1: 

Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)

Số giá trị nguyên thỏa mãn điều kiện là:

\(\left(2+4\right)+1=7\)

 

a) <

b) <

c) >

d) <

      a <

            b <

                           c >

                   d <

6 tháng 10 2021

a/ $3\sqrt 7=\sqrt{63}$

$2\sqrt{15}=\sqrt{60}$

Ta có: 63>60

$\Rightarrow\sqrt{63}>\sqrt{60}$ hay $3\sqrt 7>2\sqrt{15}$

b/ $-4\sqrt 5=-\sqrt{80}$

$-5\sqrt 3=-\sqrt{75}$

Ta có: 80>75

$\Rightarrow \sqrt{80}>\sqrt{75}$

$\Rightarrow-\sqrt{80}<-\sqrt{75}$ hay $-4\sqrt 5<-5\sqrt 3$

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

16 tháng 7 2021

\(1.-3< -5+\sqrt{5}\)

\(2.-4>-2\sqrt{5}\)

\(3.-3\sqrt{5}< -6\)

2) \(4=\sqrt{16}\)

\(2\sqrt{5}=\sqrt{20}\)

mà 16<20

nên \(-4>-2\sqrt{5}\)

3) \(3\sqrt{5}=\sqrt{45}\)

\(6=\sqrt{36}\)

mà 45>36

nên \(-3\sqrt{5}< -6\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)