Tìm a,b biết
a) \(\left(a-2009\right)^2+\left(b+2010\right)^2=0\)
b) /a-2010/=2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a-2009\right)^2+\left(b+2010\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a-2009=0\\b+2010=0\end{cases}\Rightarrow\hept{\begin{cases}a=2009\\b=-2010\end{cases}}}\)
Vậy : ...................
Vì (a - 2009) và ( b + 2010) có số mũ chẵn
Nên : nếu giá trị của ( a - 2009) và ( b + 2010) bé hơn hoặc lớn hơn 0 thì tổng 2 số không thể bằng 0
=> \(\hept{\begin{cases}a-2009=0\\b+2010=0\end{cases}\Rightarrow\hept{\begin{cases}a=2009\\b=-2010\end{cases}}}\)
Bài 2:
Vì a,b là nghiệm PT nên \(\left\{{}\begin{matrix}30a^2-4a=2010\\30b^2-4b=2010\end{matrix}\right.\)
\(\Rightarrow N=\dfrac{a^{2008}\left(30a^2-4a\right)+b^{2008}\left(30b^2-4b\right)}{a^{2008}+b^{2008}}\\ \Rightarrow N=\dfrac{a^{2008}\cdot2010+b^{2008}\cdot2010}{a^{2008}+b^{2008}}=2010\)
Bài 1:
Viét: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)
\(M=\dfrac{2x_1^2+x_1x_2+2x_2^2}{x_1^2x_2+x_1x_2^2}=\dfrac{2\left(x_1+x_2\right)^2-3x_1x_2}{x_1x_2\left(x_1+x_2\right)}=\dfrac{2a^2-3a+3}{a^2-a}\)
Ta thấy :
\(\left\{{}\begin{matrix}\left(a-2009\right)^2\ge0\\\left(b+2010\right)^2\ge0\end{matrix}\right.\)
Mà \(\left(a-2009\right)^2+\left(b+2010\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2009\right)^2=0\\\left(b+2010\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2009=0\\b+2010=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2009\\b=-2010\end{matrix}\right.\)
Vậy ............
\(\left(a-2009\right)^2+\left(b+2010\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-2009\right)^2=0\\(b+2010)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-2009=0\\b+2010=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2009\\b=-2010\end{matrix}\right.\)
vậy \(a=2009\)
\(b=-2010\)
chúc bạn học tốt
Bài 1:
Đặt x-2009=y. Khi đó phương trình đã cho trở thành:
\(\frac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow4y^2-4y-15=0\)
\(\Leftrightarrow\)(2y-5).(2y+3)=0
\(\Leftrightarrow\left[\begin{matrix}y=2,5\\y=-1,5\end{matrix}\right.\)
Thay y=x-2009. Ta được: \(\left[\begin{matrix}x=2009+2,5=2011,5\\x=2009-1,5=2007,5\end{matrix}\right.\)
Vậy x=2011,5 hoặc x=2007,5
đặt 2009-x=a,x-2010=b
suy ra a^2+ab+b^2/a^2-ab+b^2=19/49
suy ra 49(a^2+ab+b^2)=19(a^2-ab+b^2)
49a^2+49ab+49b^2=19a^2-19ab+19b^2
30a^2+68ab+30b^2=0
30a^2+50ab+18ab+30b^2=0
10a(3a+5b)+6b(3a+5b)=0
(3a+5b)(10a+6b)=0
suy ra 3a+5b=0 hoặc 10a+6b=0
thế vào lại rồi tìm x
\(A>B\),có lẽ là bởi vì \(A\)có mũ 2010 ;còn \(B\)thì lại có mũ 2009.
a) \(\left(a-2009\right)^2+\left(b+2010\right)^2=0\)
vì \(\left(a-2009\right)^2\ge0\) \(\left(b+2010\right)^2\ge0\)
suy ra \(a-2009=0\Rightarrow a=2009\)
\(b+2010=0\Rightarrow b=-2010\)
b) \(\left|a-2010\right|=2009\)
* Nếu \(a-2010\ge0\Rightarrow a>2010\)
\(a-2010=2009\)
\(a=4019\)(TMĐK)
* Nếu \(a-2010< 0\Rightarrow a< 2010\)
\(-\left(a-2010\right)=2009\)
\(a=1\)(TMĐK)
Vậy \(a=4019\) hoặc \(a=1\)