K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

a, 2+4+6+...+2x=210

=> 1+2+3+...+x=105

=>\(\frac{x+1}{2}\times x\)= 105

=>\(x^2+x=210\)

Giải PT ta đc: x=14

30 tháng 10 2018

  a   2+4+6+...+2x= 210

  x.(x+1)       = 210

NX: x, x+1 là hai số liên tiếp

\(\Rightarrow\)210 là tích của 2 số liên tiếp

\(\Rightarrow\)14.15=210

x=14

b

1+3+5+...+(2x-1) = 225

            x.x       = 225

                x      =15

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

a: =>3^x=3^4*3=3^5

=>x=5

b: =>\(2^{x+1}=2^5\)

=>x+1=5

=>x=4

c: \(\Leftrightarrow3^{x+2-3}=3\)

=>x-1=1

=>x=2

d: \(\Leftrightarrow x^2=\dfrac{32}{2}=16\)

=>x=4 hoặc x=-4

e: (2x-1)^4=81

=>2x-1=3 hoặc 2x-1=-3

=>2x=4 hoặc 2x=-2

=>x=-1 hoặc x=2

f: (2x-6)^4=0

=>2x-6=0

=>x-3=0

=>x=3

18 tháng 8 2023

a) \(3^x=81\cdot3\)

\(\Rightarrow3^x=3^4\cdot3\)

\(\Rightarrow3^x=3^5\)

\(\Rightarrow x=5\)

b) \(2^{x+1}=32\)

\(\Rightarrow2^{x+1}=2^5\)

\(\Rightarrow x+1=5\)

\(\Rightarrow x=4\)

c) \(3^{x+2}:27=3\)

\(\Rightarrow3^{x+2}:3^3=3\)

\(\Rightarrow3^{x+2-3}=3\)

\(\Rightarrow3^{x-1}=3\)

\(\Rightarrow x-1=1\)

\(\Rightarrow x=2\)

d) \(2x^2=32\)

\(\Rightarrow x^2=16\)

\(\Rightarrow x^2=4^2\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

e) \(\left(2x-1\right)^4=81\)

\(\Rightarrow\left(2x-1\right)^4=3^4\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

f)  \(\left(2x-6\right)^4=0\)

\(\Rightarrow2x-6=0\)

\(\Rightarrow2x=6\)

\(\Rightarrow x=6:2\)

\(\Rightarrow x=3\)

a: =>2x-x=-5/2-1/3

=>x=-17/6

b: =>4(x-2)2=36

=>(x-2)2=9

=>x-2=3 hoặc x-2=-3

hay x=5 hoặc x=-1

c: =>2x+1/2=5/6

=>2x=1/3

hay x=1/6

21 tháng 1 2022

a: =>2x-x=-5/2-1/3

=>x=-17/6

b: =>4(x-2)2=36

=>(x-2)2=9

=>x-2=3 hoặc x-2=-3

hay x=5 hoặc x=-1

c: =>2x+1/2=5/6

=>2x=1/3

hay x=1/6

a: =>(2x-1)^3=4^12:4^10=4^2=8

=>2x-1=2

=>2x=3

=>x=3/2(loại)

b: 6x+5 chia hết cho 3x-1

=>6x-2+7 chia hết cho 3x-1

=>7 chia hết cho 3x-1

mà x là số tự nhiên

nên 3n-1=-1

=>n=0

10 tháng 8 2023

42 = 8 (?)

12 tháng 10 2021

Bài 1

a) \(x=x^5\)

\(x^5-x=0\)

\(x\left(x^4-1\right)=0\)

\(x=0\) hoặc \(x^4-1=0\)

\(x^4-1=0\)

\(x^4=1\)

\(x=1\)

Vậy x = 0; x = 1

b) \(x^4=x^2\)

\(x^4-x^2=0\)

\(x^2\left(x^2-1\right)=0\)

\(x^2=0\) hoặc \(x^2-1=0\)

*) \(x^2=0\)

\(x=0\)

*) \(x^2-1=0\)

\(x^2=1\)

\(x=1\)

Vậy \(x=0\)\(x=1\)

c) \(\left(x-1\right)^3=x-1\)

\(\left(x-1\right)^3-\left(x-1\right)=0\)

\(\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)

\(x-1=0\) hoặc \(\left(x-1\right)^2-1=0\)

*) \(x-1=0\)

\(x=1\)

*) \(\left(x-1\right)^2-1=0\)

\(\left(x-1\right)^2=1\)

\(x-1=1\) hoặc \(x-1=-1\)

**) \(x-1=1\)

\(x=2\)

**) \(x-1=-1\)

\(x=0\)

Vậy \(x=0\)\(x=1\)\(x=2\)

 

14 tháng 12 2022

\(\dfrac{1}{6}+x=\dfrac{5}{12}\)
\(=>x=\dfrac{5}{12}-\dfrac{2}{12}=\dfrac{1}{4}\)
\(\dfrac{3}{4}+\dfrac{1}{4}x=-\dfrac{1}{2}\)
\(=>\dfrac{1}{4}x=-\dfrac{5}{4}\)
\(=>x=-\dfrac{5}{4}.4=-5\)
\(7^{2x}+7^{2x+3}=344\)
\(< =>49^x+49^x.343=344\)
\(=>x=?\)

3 tháng 8 2023

Bài 4: Sao tìm được n khi chỉ cho 1 vế

Bài 6:

\(\left(2x-3\right)^2=\dfrac{196}{225}=\left(\dfrac{14}{15}\right)^2=\left(-\dfrac{14}{15}\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=\dfrac{14}{15}\\2x-3=-\dfrac{14}{15}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{14}{15}+3=\dfrac{59}{15}\\2x=\dfrac{-14}{15}+3=-\dfrac{31}{15}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{59}{15}:2=\dfrac{59}{30}\\x=-\dfrac{31}{15}:2=-\dfrac{31}{30}\end{matrix}\right.\)

 

3 tháng 8 2023

Câu 4 : 4^n+2 - 4^n-1 = 252
đây ạ

 

11 tháng 9 2023

\(a,-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+1}{6}=\dfrac{8}{3}\)

\(\Rightarrow-\dfrac{6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{8}{3}\)

\(\Rightarrow\dfrac{-6x+8x+3x+3+4x+2}{12}=\dfrac{8}{3}\)

\(\Rightarrow\dfrac{9x+5}{12}=\dfrac{8}{3}\)

\(\Rightarrow27x+15=96\)

\(\Rightarrow27x=81\)

\(\Rightarrow x=3\left(tm\right)\)

\(b,\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)

\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)

\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)

\(\Rightarrow\dfrac{3+5-2}{2x+1}=\dfrac{6}{13}\)

\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)

\(\Rightarrow2x+1=13\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\left(tm\right)\)

#Toru

11 tháng 9 2023

a) \(-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+2}{6}=\dfrac{8}{3}\) 

\(\Rightarrow\dfrac{-6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{4\cdot8}{12}\)

\(\Rightarrow-6x+8x+3x+3+4x+2=32\)

\(\Rightarrow9x+5=32\)

\(\Rightarrow9x=32-5\)

\(\Rightarrow9x=27\)

\(\Rightarrow x=\dfrac{27}{9}\)

\(\Rightarrow x=3\)

b) \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\) (ĐK: \(x\ne-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)

\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)

\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)

\(\Rightarrow2x+1=13\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=\dfrac{12}{2}\)

\(\Rightarrow x=6\left(tm\right)\)