a)(x+2018)^2*(x+1)*(x-4)<0
b)x<2x
c)x^3<x^2
đây là dạng toán tìm x mong các bạn giải dùm(toán hsg lớp 7)
THANKS YOU VERY!(giải nhanh nhất có thể dùm mk)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ad C-S
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{\left(x^2\right)^2}{a}+\dfrac{\left(x^2\right)^2}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}=\dfrac{1}{a+b}\)
Dạng bài tập chứng minh dạng tổng quát rồi suy ra đpcm
Bài làm :
Xét dạng tổng quát : Cho \(\hept{\begin{cases}a+b=x+y\\a^4+b^4=x^4+y^4\end{cases}}\)
\(a^k+b^k=x^k+y^k\)(1)
+) Xét \(k=1\)ta có (1) hiển nhiên đúng
+) Xét \(k=2\)ta cũng thu được (1) đúng
Giả sử (1) đúng với \(k=n\)
Ta cần chứng minh (1) đúng với \(k=n+1\)
Khi đó : \(\left(1\right)\Leftrightarrow a^{n+1}+b^{n+1}=x^{n+1}+y^{n+1}\)
Xét \(a^{n+1}+b^{n+1}=\left(a^n+b^n\right)\left(a+b\right)-a^nb-ab^n\)
\(=\left(a^n+b^n\right)\left(a+b\right)-ab\left(a^{n-1}+b^{n-1}\right)\)
\(=\left(x^n+y^n\right)\left(x+y\right)-ab\left(x^{n-1}+y^{n-1}\right)\)(*)
Ta có \(x^2+y^2=a^2+b^2\Leftrightarrow\left(x+y\right)^2-2xy=\left(a+b\right)^2-2ab\)
\(\Leftrightarrow-2xy=-2ab\Leftrightarrow xy=ab\)
Khi đó : (*)\(\Leftrightarrow\left(x^n+y^n\right)\left(x+y\right)-xy\left(x^{n-1}+y^{n-1}\right)=x^{n+1}+y^{n+1}\)
Ta có đpcm
Xem thêm : Câu hỏi của Nguyễn Thu Huyền - Toán lớp 8 | Học trực tuyến
A = 1 + 2 + 3 + ... + 2018
= ( 1 + 2018 ) + ( 2 + 2017) + ... + ( 1009 + 1010 )
= 2019 + 2019 + ... + 2019 ( có 1009 số 2019 )
= 2019 x 1009 = 2037171
B = 1 + 3 + 5 + ... + 2017
= ( 1 + 2017 ) + ( 3 + 2015 ) + ... + ( 1007 + 1010) + 1009
= 2018 + 2018 + ... + 2018 + 1009 (có 504 số 2018)
= 2018 x 504 + 1009 = 1018081
Còn lại làm giống ý trên .
\(a,\text{Ta có: với mọi}\) \(x\) \(\text{thì}\) \(\left(x+2018\right)^2\ge0\)
\(\Rightarrow\orbr{\begin{cases}x+1>0;x-4< 0\\x+1< 0;x-4>0\end{cases}}\)
TH1: \(\hept{\begin{cases}x+1>0\\x-4< 0\end{cases}\text{}\Rightarrow\hept{\begin{cases}x>-1\\x< 4\end{cases}\Rightarrow-1< x< 4}}\)
TH2: \(\hept{\begin{cases}x+1< 0\\x-4>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>4\end{cases}\left(loại\right)}}\)
Vậy \(-1< x< 4\)
\(b.x< 2x\)
\(\Rightarrow x-2x< 0\)
\(\Rightarrow x.\left(1-2\right)< 0\)
\(-x< 0\)
\(x>0\)
\(x^3< x^2\)
\(\Rightarrow x^3-x^2< 0\)
\(\Rightarrow x^2\left(x-1\right)< 0\)
\(\Rightarrow\orbr{\begin{cases}x^2>0;\left(x-1\right)< 0\left(nhận\right)\\x^2< 0;\left(x-1\right)>0\left(loại\right)\end{cases}}\)
\(\Rightarrow x< 1\left(x\ne0\right)\)