K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 5 2020

Lời giải:

Vì $y_M=y_N=1$ nên đường thẳng đi qua 2 điểm $M,N$ có dạng $y=1$

24 tháng 11 2021

Gọi \(\left(d\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm

\(N\left(5;-1\right)\text{ và }M\left(2;1\right)\in\left(d\right)\Leftrightarrow\left\{{}\begin{matrix}2a+b=1\\5a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=\dfrac{7}{3}\end{matrix}\right.\\ \Leftrightarrow\left(d\right):y=-\dfrac{2}{3}x+\dfrac{7}{3}\)

31 tháng 5 2018

Gọi phương trình đường thẳng d cần tìm là  y   =   a x   +   b   ( a ≠     0 )

Vì d // d’ nên a = 3 b ≠ 1 ⇒  d:  y   =   3 x   +   b

Thay tọa độ điểm M vào phương trình đường thẳng d ta được:

3 . ( − 2 )   +   b   =   2   ⇒   b   =   8   (thỏa mãn)

Vậy phương trình đường thẳng d:  y   =   3 x   +   8

Đáp án cần chọn là: B

Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình

\((x-a)^2+(y-b)^2=R^2.\)

\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:

\(a-b+1=0 (1)\)

Hạ \(MH⊥AB\)\(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)

\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)

\(\Rightarrow R = \sqrt{2} \)

Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)

Ta có hệ : 

\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)

Giải hệ \(PT\) ta được: \(a=1;b=2\).

\(\rightarrow \)Vậy \((C) \)có  phương trình:\((x-1)^2+(y-2)^2=2\)

 

7 tháng 7 2017

17 tháng 4 2022

a) Để (d) đi qua điểm A(1;3) thì \(3=2m.1+5\Rightarrow2m=-2\Rightarrow m=-1\)

b) Xét phương trình hoành độ giao điểm: \(x^2=2mx+5\)

\(\Rightarrow x^2-2mx-5=0\left(I\right)\)

Ta có \(\Delta'=m^2+5>0,\forall m\) nên PT (I) luôn có 2 nghiệm phân biệt \(x_1,x_2\) với mọi \(m\)

Vậy (d) luôn cắt (P) tại hai điểm phân biệt.

c) Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-5\end{matrix}\right.\)

Để \(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow4m^2-2.\left(-5\right)=4\Leftrightarrow4m^2=-6\) (Vô lý)

Vậy không có m thỏa mãn ycbt.