Viết phương trình đường thẳng d biết rằng d đi qua 2 điểm phân biệt M (2 ; 1) và n (-5; 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\left(d\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(N\left(5;-1\right)\text{ và }M\left(2;1\right)\in\left(d\right)\Leftrightarrow\left\{{}\begin{matrix}2a+b=1\\5a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=\dfrac{7}{3}\end{matrix}\right.\\ \Leftrightarrow\left(d\right):y=-\dfrac{2}{3}x+\dfrac{7}{3}\)
Gọi phương trình đường thẳng d cần tìm là y = a x + b ( a ≠ 0 )
Vì d // d’ nên a = 3 b ≠ 1 ⇒ d: y = 3 x + b
Thay tọa độ điểm M vào phương trình đường thẳng d ta được:
3 . ( − 2 ) + b = 2 ⇒ b = 8 (thỏa mãn)
Vậy phương trình đường thẳng d: y = 3 x + 8
Đáp án cần chọn là: B
Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình
\((x-a)^2+(y-b)^2=R^2.\)
\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:
\(a-b+1=0 (1)\)
Hạ \(MH⊥AB\) có \(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)
\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)
\(\Rightarrow R = \sqrt{2} \)
Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)
Ta có hệ :
\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)
Giải hệ \(PT\) ta được: \(a=1;b=2\).
\(\rightarrow \)Vậy \((C) \)có phương trình:\((x-1)^2+(y-2)^2=2\)
a) Để (d) đi qua điểm A(1;3) thì \(3=2m.1+5\Rightarrow2m=-2\Rightarrow m=-1\)
b) Xét phương trình hoành độ giao điểm: \(x^2=2mx+5\)
\(\Rightarrow x^2-2mx-5=0\left(I\right)\)
Ta có \(\Delta'=m^2+5>0,\forall m\) nên PT (I) luôn có 2 nghiệm phân biệt \(x_1,x_2\) với mọi \(m\)
Vậy (d) luôn cắt (P) tại hai điểm phân biệt.
c) Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-5\end{matrix}\right.\)
Để \(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow4m^2-2.\left(-5\right)=4\Leftrightarrow4m^2=-6\) (Vô lý)
Vậy không có m thỏa mãn ycbt.
Lời giải:
Vì $y_M=y_N=1$ nên đường thẳng đi qua 2 điểm $M,N$ có dạng $y=1$