tim x:
2^x+2-2^x=192
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+ 2 + x+ 4 + x +6 + x + 8 + x + 10 + x + 12 = 192
6x + 2+ 4 + 6 + 8 + 10 + 12 = 192
6x+ 42 = 192
6x= 192 - 42
6x= 150
x = 150 : 6
x= 25
x+2+x+4+x+6+x+8+x+10+x+12= 192
<=> 6x + 42 = 192
<=> 6x = 150
<=> x = 25
Ta có: (x2 - 1)(x2 + 4x + 3) = 192
<=> (x - 1)(x + 1)(x2 + 3x + x + 3) - 192 = 0
<=> (x - 1)(x + 1)(x + 1)(x + 3) - 192 = 0
<=> [(x - 1)(x + 3)](x + 1)2 - 192 = 0
<=> (x2 + 2x - 3)(x2 + 2x + 1) - 192 = 0
Đặt : x2 + 2x - 3 = y
<=> y(y + 4) - 192 = 0
<=> y2 + 4y - 192 = 0
<=> y2 + 16y - 12y - 192 = 0
<=> y(y + 16) - 12(y + 16) = 0
<=> (y - 12)(y + 16) = 0
<=> \(\orbr{\begin{cases}y-12=0\\y+16=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2+2x-3-12=0\\x^2+2x-3+16=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2+2x-15=0\\x^2+2x+13=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2+5x-3x-15=0\\\left(x^2+2x+1\right)+12=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+5\right)\left(x-3\right)=0\\\left(x+1\right)^2+12=0\left(ktm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x+5=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)
Vậy ...
\(\text{a) }3x+\dfrac{4}{9}=2x+\dfrac{11}{18}\\ \Leftrightarrow3x-2x=\dfrac{11}{18}-\dfrac{4}{9}\\ \Leftrightarrow x=\dfrac{1}{6}\\ \text{Vậy }x=\dfrac{1}{6}\\ \)
\(\text{b) }\dfrac{7}{12}+\dfrac{2}{3}:x=\dfrac{5}{8}\\ \Leftrightarrow\dfrac{2}{3}:x=\dfrac{1}{24}\\ \Leftrightarrow x=16\\ \text{Vậy }x=16\\ \)
\(\text{c) }\left|2.5-x\right|-\dfrac{1}{5}=1.2\\ \Leftrightarrow\left|2.5-x\right|=1.4\\ \Leftrightarrow\left[{}\begin{matrix}2.5-x=-1.4\\2.5-x=1.4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.9\\x=1.1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{39}{10}\\x=\dfrac{11}{10}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{39}{10}\text{ hoặc }x=\dfrac{11}{10}\\ \)
\(\text{d) }2^{x+1}+2^{x+2}=192\\ \Leftrightarrow2^x\cdot2+2^x\cdot4=192\\ \Leftrightarrow2^x\left(2+4\right)=192\\ \Leftrightarrow2^x\cdot6=192\\ \Leftrightarrow2^x=32\\ \Leftrightarrow2^x=2^5\\ \Leftrightarrow x=5\\ \text{Vậy }x=5\\ \)
\(\left(x^2-1\right)\left(x+1\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+1\right)^2\left(x+3\right)\)
1, \(4x=5y\)
mà \(y-2x=-5\)
\(\Rightarrow x=\frac{y+5}{2}\)
\(\Rightarrow\left(\frac{y+5}{2}\right).4=5y\)
\(\Rightarrow\frac{4y+20}{2}=5y\)
\(\Rightarrow2y+10=5y\)
\(\Rightarrow10=3y\)
\(\Rightarrow y=\frac{10}{3}\)
\(\Rightarrow x=\frac{y+5}{2}=\frac{\frac{10}{3}+5}{2}=\frac{\frac{25}{3}}{2}=\frac{25}{6}\)
Vậy \(x=\frac{25}{6};y=\frac{10}{3}\)
b, \(\frac{x}{3}=\frac{y}{4}\)
mà \(xy=192\)
Gọi \(x=3k\)
\(y=4k\)
\(\Rightarrow3k.4k=192\)
\(\Rightarrow12.k^2=192\)
\(\Rightarrow k^2=\frac{192}{12}\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k^2=4^2\)
\(\Rightarrow k=4\)
\(\Rightarrow x=3k=3.4=12\)
\(\Rightarrow y=4k=4.4=16\)
Vậy \(x=12;y=16\)
=> 2^x.2^2-2^x=192
=> 2^x.(4-1)=192
2^x=192:(4-1)=64=2^6
=> x=6
\(2^{x+2}-2^x=192\)
\(2^x\left(2^2-1\right)=192\)
\(2^x.3=192\)
\(2^x=192:3=64=2^6\)
\(\Rightarrow x=6\)