Chứng tỏ rằng 221 + 815; 215 + 424 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng 100 số hang đầu tiên của dãy là:
1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197
= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401
=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)
=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)
=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4
==> ĐPCM
Tổng 100 số hang đầu tiên của dãy là:
1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197
= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401
=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)
=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)
=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4
==> ĐPCM
nhớ k cho mình nha
Tổng 100 số hạng đầu tiên của dãy trên là:
\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)
=\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}\)
=\(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1`}{17}+...+\frac{1}{397}-\frac{1}{401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{401}\right)<\frac{1}{4}.\left(1-0\right)=\frac{1}{4}.1=\frac{1}{4}\)
=>ĐPCM
215 + 424
có : 215 ⋮ 2
424 ⋮ 2
nên 215 + 424 ⋮ 2
=> 215 + 424 là hợp số
vậy_
221 + 815 k bt nha
a) Nhận thấy 4 = 1.4 = 2.2 và 11 = 1.11.
Nên ta phân tích được 4 11 = 1 11 . 4 1 = 2 11 . 2 1
b) 10 21 = 2.5 3.7 = 2 3 . 5 7 = 2 7 . 5 3
c) 2 21 = 1.2 3.7 = 1 3 . 2 7 = 1 7 . 2 3
d) Nhận thấy 8 = 1.8 = 2.4 và 15 = 1.15 = 3.5.
Nên ta phân tích được 8 15 = 1 3 . 8 5 = 8 3 . 1 5 = 2 3 . 4 5 = 4 3 . 2 5
Viết các phân số sau dưới dạng tích của hai phân số có tử và mẫu là các số nguyên dương có một chữ số:
a) Nhận thấy 4 = 1.4 = 2.2 và 11 = 1.11.
Nên ta phân tích được 4 11 = 1 11 . 4 1 = 2 11 . 2 1
b) 10 21 = 2.5 3.7 = 2 3 . 5 7 = 2 7 . 5 3
c) 2 21 = 1.2 3.7 = 1 3 . 2 7 = 1 7 . 2 3
d) Nhận thấy 8 = 1.8 = 2.4 và 15 = 1.15 = 3.5.
Nên ta phân tích được 8 15 = 1 3 . 8 5 = 8 3 . 1 5 = 2 3 . 4 5 = 4 3 . 2 5
*HÌNH NHƯ *
vì tổng mẫu số của dãy số luôn luôn bé hơn 4 mà \(\frac{1}{x}>\frac{1}{y}\left(y>x\right)\)nên tổng của 100 số hạng đầu của dãy số nhỏ hơn \(\frac{1}{4}\)
A = 2 + 22 + 23 + 24 + ... + 259 + 260 + 52021
= (2 + 23) + (22 + 24) + (25 + 27) +... + (257 + 259) + (258 + 260) + 52021
= 2(1 + 22) + 22(1 + 22) + 25(1 + 22) + ... + 257(1 + 22) + 258(1 + 22) + 52021
= (1 + 22)(2 + 22 + 25 + ... + 257 + 258) + 52021
= 5(2 + 22 + 25 + ... + 257 + 258) + 52021
= 5(2 + 22 + 25 + ... + 257 + 258 + 52020) \(⋮\)5
\(2+2^2+2^3+2^4+...+2^{59}+2^{60}+5^{2021}\)
\(=\left(2+2^3\right)+\left(2^2+2^4+\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)+\left(2^{58}+2^{60}\right)+5^{2021}\)
\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{57}\left(1+2^2\right)+2^{58}+\left(1+2^2\right)+5^{2021}\)\(=\left(1+1^2\right)\left(2+2^2+2^5+...2^{57}+2^{58}\right)+5^{2021}\)
\(=5\left(2+2^2+2^5+...+2^{57}+2^{58}\right)+5^{2021}\)
\(=5\left(2+2^2+2^5+...+2^{57}+2^{58}+5^{2021}\right)⋮5\)
\(\text{Hok tốt!}\)
\(\text{@Kaito Kid}\)
\(2^{21}+8^{15}=2^{21}+2^{45}=2^{21}\left(1+2^{24}\right)⋮2^{21};1+2^{24}\)
Vậy là hợp số .
\(2^{15}+424=2^{15}+2^3.53=2^3\left(2^{12}+53\right)⋮8;2^{12}+53\)
Vậy là hợp số .