cm bất đẳng thức a^5+b^5>a^4b+ab^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c và d ở đâu vại:>
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a= b
Ta có đpcm
\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge4\left(a^2+b^2\right)^2+\dfrac{1}{ab}\)
\(\ge4\left(\dfrac{\left(a+b\right)^2}{2}\right)^2+\dfrac{4}{\left(a+b\right)^2}=1+4=5\)
Bài làm
a) Đặt a3 + b3 - ab2 - a2b = 0
<=> ( a + b )( a2 + ab + b2 ) - ab( a + b ) = 0
<=> ( a + b )( a2 + ab + b2 - ab ) = 0
<=> ( a + b )( a2 + b2 ) = 0 (1)
Mà a2 + b2 > 0
=> ( a + b )( a2 + b2 ) > 0 (2)
Từ (1) và (2) => ( a + b )( a2 + b2 ) > 0
Vậy a3 + b3 - ab2 - a2b > 0 ( đpcm )
b) Đặt a5 + b5 - a4b - ab4 = 0
<=> ( a5 - a4b ) + ( b5 - ab4 ) = 0
<=> a4( a - b ) + b4( b - a ) = 0
<=> a4( a - b ) - b4( a - b ) = 0
<=> ( a - b )( a4 - b4 ) = 0 (1)
Mà a4 - b4 = ( a2 + b2 )( a2 - b2 ) < 0
=> ( a - b )( a4 - b4 ) < 0 (2)
Từ (1) và (2) => ( a - b )( a4 - b4 ) < 0
Vậy a5 + b5 - a4b - ab4 < 0 ( đpcm )
ta có (a-b)2 >= 0 V a,b
(=) a2 -2ab+b2 >=0
(=) a2 + b2 >= 2ab
(=) (a2 + b2)/2 >= ab(ĐPCM)
#Học-tốt
\(\frac{a^2+b^2}{2}\ge ab\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) * đúng *
BĐT đã cho sai
Phản ví dụ: \(a=-2;b=-1\) thì \(a^5+b^5=-33\)
\(\left(a^3+b^3\right)ab=-18\)
Rõ ràng trong trường hợp này \(a^5+b^5< \left(a^3+b^3\right)ab\)
Sai đề.