Tính giá trị của biểu thức
|2x - 4| = |5x + 3|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: (2x-1)(x2+5x-4)
\(=2x^3+10x^2-8x-x^2-5x+4\)
\(=2x^3+9x^2-13x+4\)
b: \(=-\left(10x^2+15x-8x-12\right)\)
\(=-\left(10x^2+7x-12\right)\)
\(=-10x^2-7x+12\)
c: \(=7x^2-28x-\left(14x^3-7x^2+28x+3x^2-3x+12\right)\)
\(=7x^2-28x-14x^3+4x^2-25x-12\)
\(=-14x^3+11x^2-53x-12\)
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
\(A=2x^2-5x+1\)
\(\text{Thay }x=\dfrac{1}{2}\text{ vào biểu thức A,ta được:}\)
\(A=2.\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}+1\)
\(A=2.\dfrac{1}{4}-5.\dfrac{1}{2}+1\)
\(A=\dfrac{1}{2}-\dfrac{5}{2}+1\)
\(A=\left(-2\right)+1\)
\(A=-1\)
\(\text{Vậy giá trị của biểu thức A tại }x=\dfrac{1}{2}\text{ là:}-1\)
`5x(4x^2-2x+1)-2x(10x^2-5x-2)`
`= 20x^3-10x^2+5x - (20x^3-10x^2-4x)`
`=9x`
Thay `x=15` có: `9.15=135`.
a)
A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)
\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
MTC: 5(x-1)(x+1)
\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)
\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)
\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)
\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)
\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)
\(\Leftrightarrow10x+10\)
\(\left|2x-4\right|=\left|5x+3\right|\)
\(\Rightarrow\orbr{\begin{cases}2x-4=5x+3\\2x-4=-5x+3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-4=5x+3\\2x-5x=-5x-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-5x=3+4\\2x+5x=-3+4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-3x=7\\7x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-7}{3}\\x=\frac{1}{7}\end{cases}}\)