K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

\(\left|2x-4\right|=\left|5x+3\right|\)

\(\Rightarrow\orbr{\begin{cases}2x-4=5x+3\\2x-4=-5x+3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x-4=5x+3\\2x-5x=-5x-3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x-5x=3+4\\2x+5x=-3+4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-3x=7\\7x=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-7}{3}\\x=\frac{1}{7}\end{cases}}\)

9 tháng 3 2022

chịu

22 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

 Bài 2 :Thực hiện phép tính          a/ (2x – 1)(x2 + 5 – 4)                          b/ -(5x – 4)(2x + 3)         c/ 7x(x – 4) – (7x + 3)(2x2 – x + 4).Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.a/ x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).b/ 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.Bài 4: Tìm x, biết.a/ 3x + 2(5 – x) = 0   b/ 5x( x – 2000) – x + 2000 = 0      c/ 2x( x + 3 ) – x – 3  = 0Bài 5: Tính giá trị các biểu...
Đọc tiếp

 

Bài 2 :Thực hiện phép tính

          a/ (2x – 1)(x2 + 5 – 4)                          b/ -(5x – 4)(2x + 3)

         c/ 7x(x – 4) – (7x + 3)(2x2 – x + 4).

Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.

a/ x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).

b/ 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.

Bài 4: Tìm x, biết.

a/ 3x + 2(5 – x) = 0   b/ 5x( x – 2000) – x + 2000 = 0      c/ 2x( x + 3 ) – x – 3  = 0

Bài 5: Tính giá trị các biểu thức sau:

a. P = 5x(x2 – 3) + x2(7 – 5x) – 7x2 với x = - 5

b. Q = x(x – y) + y(x – y) với x = 1,5, y = 10

Bài 6: Rút gọn biểu thức:

a. (6x + 1)2 + (6x – 1)2 – 2(1 + 6x)(6x – 1)

b. 3(22 + 1)(24 + 1)(28 + 1)(216 + 1)

II/ PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ   

Bài 1: Phân tích đa thức thành nhân tử.

a/ 14x2y – 21xy2 + 28x2y2                             b/    x(x + y) – 5x – 5y.       

c/ 10x(x – y) – 8(y – x).                               d/ (3x + 1)2 – (x + 1)2           

1

Bài 2: 

a: (2x-1)(x2+5x-4)

\(=2x^3+10x^2-8x-x^2-5x+4\)

\(=2x^3+9x^2-13x+4\)

b: \(=-\left(10x^2+15x-8x-12\right)\)

\(=-\left(10x^2+7x-12\right)\)

\(=-10x^2-7x+12\)

c: \(=7x^2-28x-\left(14x^3-7x^2+28x+3x^2-3x+12\right)\)

\(=7x^2-28x-14x^3+4x^2-25x-12\)

\(=-14x^3+11x^2-53x-12\)

b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:

\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)

Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)

5 tháng 3 2021

Ta có:

|x| = \(\dfrac{1}{3}\)

\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)

12 tháng 2 2017

12 tháng 3 2022

\(A=2x^2-5x+1\)

\(\text{Thay }x=\dfrac{1}{2}\text{ vào biểu thức A,ta được:}\)

\(A=2.\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}+1\)

\(A=2.\dfrac{1}{4}-5.\dfrac{1}{2}+1\)

\(A=\dfrac{1}{2}-\dfrac{5}{2}+1\)

\(A=\left(-2\right)+1\)

\(A=-1\)

\(\text{Vậy giá trị của biểu thức A tại }x=\dfrac{1}{2}\text{ là:}-1\)

20 tháng 7 2021

`5x(4x^2-2x+1)-2x(10x^2-5x-2)`

`= 20x^3-10x^2+5x - (20x^3-10x^2-4x)`

`=9x`

Thay `x=15` có: `9.15=135`.

20 tháng 6 2021

a)

A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)

\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

MTC: 5(x-1)(x+1)

\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)

\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)

\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)

\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)

\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)

\(\Leftrightarrow10x+10\)