K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

x^2+x(6-2x) = 3x(x+1)-4(x^2-1)

x^2+6x-2x^2=3x^2-4x^2+4

6x-x^2=4-x^2

6x=4

x=3/2

1 tháng 11 2015

ta có  x^2 +x(6-2x) = 3x(x+1)-4(x^2-1)

hay: x^2+6x-2x^2=3x^2+3x-4x^2+4

=> x^2 + 6x -2x^2 - 3x^2 - 3x +4x -4 =0

=>3x - 4 = 0

=>3x=4

=>x=4/3

26 tháng 8 2019

Em thì cứ Bunyakovski thôi ạ:( ko chắc..

Theo BĐT Bunyakovski, ta có: \(\left(\sqrt{2x^2}^2+\sqrt{3y^2}^2\right)\left(\sqrt{\frac{1}{2}}^2+\sqrt{\frac{1}{3}}^2\right)\)

\(\ge\left(x+y\right)^2=5^2=25\)

Do đó \(2x^2+3y^2\ge\frac{25}{\sqrt{\frac{1}{2}}^2+\sqrt{\frac{1}{3}}^2}=30\) 

26 tháng 8 2019

Èo, em làm sai chỗ nào vậy???

NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

3 tháng 3 2017

Đáp án B.

7 tháng 7 2017

1,A=(x2-6x+9)+2

=(x-3)2+2

ta thấy (x-3)2>=0 với mọi x

=>(x-3)2+2>=2 với mọi x

hay A>=2

dấu "="xảy ra x-3=0<=>x=3

vậy MinA=2 khi x=3

ý b sai đầu bài bạn nhé

C=-(x2-5x)

=-(x2-5x+25/4)+25/4

=-(x-5/2)2+25/4

ta thấy -(x-5/2)2<=0 với mọi x

=>-(x-5/2)2+25/4 <=25/4 với mọi x

hay C<=25/4

dấu "=" xảy ra khi x-5/2=0<=>x=5/2

vậy MaxC=25/4 khi x=5/2

k mk nha

7 tháng 7 2017

Ta có : A = x2 - 6x + 11

<=> A = x2 - 6x + 9 + 2 

<=> A = (x - 3)2 + 2

Mà (x - 3)2 \(\ge0\forall x\)

Nên A =  (x - 3)2 + 2 \(\ge2\forall x\)

Vậy Amin = 2 , dấu "=" xảy ra khi và chỉ khi x = 3