Chứng tỏ rằng
\(A=75\left(4^{2004}+4^{2003}+...+4^2+4+1\right)\)Là số chia hết hết cho 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc đặt nhầm lớp rồi
Ta có :\(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(4B=\left(4^{2004}+4^{2003}+...+4^2+4+1\right).4\)
\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(4B-B=\left(4^{2005}+4^{2004}+...+4^3+4^2+4\right)\)\(-\left(4^{2004}+4^{2003}+...+4+1\right)\)
\(3B=\left(4^{2005}-1\right)\)\(\Rightarrow\frac{4^{2005}-1}{3}\)
\(\Rightarrow A=75.\frac{4^{2005}-1}{3}+25\)
\(\Rightarrow A=25.\left(4^{2005}-1\right)+25\)
\(\Rightarrow A=25.\left(4^{2005}-1+1\right)\)
\(\Rightarrow A=25.4.4^{2004}\)
\(\Rightarrow A=100.4^{2004}\)
Mà 100 chia hết 100 nên \(100.4^{2004}\) chia hết cho 100
B=4^0 + 4^1 +...+ 4^2004
4B=4^1+4^2+...+4^2005
3B=4^2004-4^0
B=(4^2004-4^0):3
Thay B vào ta có :
A=75.(4^2004-4^0):3+25
A=25.(4^2004-4^0)+25
A=25.4^2004
A=100.4^2003
Vậy A chia hết cho 100
\(A=75.\left(4^{2004}+4^{2003}+......+4^2+1\right)+25\)
Đặt :
\(B=4^{2004}+4^{2003}+.......+4^2+4+1\)
\(\Leftrightarrow4B=4^{2005}+4^{2004}+........+4^2+4\)
\(\Leftrightarrow4B-B=\left(4^{2005}+4^{2004}+......+4^2+4\right)-\left(4^{2004}+4^{2003}+.....+4+1\right)\)
\(\Leftrightarrow3B=4^{2005}-1\)
\(\Leftrightarrow B=\dfrac{4^{2005}-1}{3}\)
\(\Leftrightarrow A=75.\dfrac{4^{2005}-1}{3}+25\)
\(\Leftrightarrow A=25.\left(4^{2004}-1+1\right)\)
\(\Leftrightarrow A=25.4.4^{2003}\)
\(\Leftrightarrow A=100.4^{2003}⋮100\left(đpcm\right)\)
A=4+4^1+4^2+..........+4^2004
A.3=4^2007-4
\(A=\frac{\left(4^{2007}-4\right)}{3}\)
Xin lỗi nha ở ngoài ngoặc còn có +25
A=75(42004+42003+..+4+1)+25
=75(42004+42003+..+4)+75+25
=3.25.(42004+42003+...+4)+100
=3.25.4(42003+42002+...+1)+100
=3.100(42003+42002+..+1)+100\(⋮\)100
=> A\(⋮\)100
Đúng thì k nha