Cho tam giác ABC vuông tại A ,AB=9 cm AC=15cm.AD là tia phân giác của góc HAC.Tính AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng định lí pytago cho tam giác abc vuông tại a
\(BC^2=\sqrt{AB^2+AC^2}=3\sqrt{34}\)
do AD là tia phân giác góc A nên
\(\dfrac{CD}{BD}=\dfrac{AC}{AB}=\dfrac{5}{3}\)
suy ra CD=\(\dfrac{15.\sqrt{34}}{8}\)
kẻ đường cao AH
suy ra \(AD^2=HD^2+AH^2\)
ta có AH.BC=AB.AC suy ra \(AH=\dfrac{45}{\sqrt{34}}\)
\(CH.BC=CA^2=225\) suy ra \(CH=\dfrac{75}{\sqrt{34}}\)
suy ra \(HD=CH-CD=...\)
thay vào tính được \(AD^2\) rồi tính dc AD
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=12^2\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{108}{15}=7.2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=\dfrac{144}{15}=9.6\left(cm\right)\end{matrix}\right.\)
Xét ΔACH có AD là đường phân giác ứng với cạnh CH, ta được:
\(\dfrac{DH}{AH}=\dfrac{DC}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{DH}{7.2}=\dfrac{DC}{12}\)
mà DH+DC=CH=9,6(cm)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DH}{7.2}=\dfrac{DC}{12}=\dfrac{DH+DC}{7.2+12}=\dfrac{9.6}{19.2}=\dfrac{1}{2}\)
Do đó:
\(DH=7.2\cdot\dfrac{1}{2}=3.6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:
\(AD^2=DH^2+AH^2\)
\(\Leftrightarrow AD^2=7.2^2+3.6^2=64.8\)
hay \(AD=\dfrac{18\sqrt{5}}{5}\left(cm\right)\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có
\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))
Do đó: ΔABD\(\sim\)ΔEBC(g-g)
a: AD là phân giác
=>BD/AB=CD/AC
=>BD/6=3/9=1/3
=>BD=2cm
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot\left(2+3\right)=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\left(cm^2\right)\)
b: Xét ΔAEC và ΔAED có
AC=AD
\(\widehat{CAE}=\widehat{DAE}\)
AE chung
Do đó: ΔAEC=ΔAED
Suy ra: EC=ED
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK
c: Xét ΔAIB có
AD vừa là đường cao, vừa là phân giác
=>ΔAIB cân tại A
=>IE là phân giác của góc BIA