K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)

\(x+1+x+2+x+3+...+x+100=5750\)

\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)

\(100x+\frac{\left(100-1\right).100}{2}=5750\)

\(100x+\frac{9900}{2}=5750\)

\(100x+4950=5750\)

\(100x=5750-4950=800\)

\(x=800\div100\)

\(\Rightarrow x=8\)

Vậy x=8

13 tháng 10 2018

vì có 100 ngoặc nên ta có 100 x

(x+1) + (x+2)+...+(x+100)=5750

100x X   +(1+2+3+...+100)=5750

xét ngoặc 1+2+3+...+100

dãy 1+2+...+100 có số số hạng là: (100-1) :1+1=100 (số hạng)

tổng của dãy đó là(100+1)x100:2=5050

ta có 100x X+5050 =5750

100x X=5750-5050

100x X=700

x=700:100

x=7

Giải:

\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\) 

                       \(100.x+\left(1+2+3+...+100\right)=5750\) 

Số số hạng \(\left(1+2+3+...+100\right)\) là: \(\left(100-1\right):1+1=100\) 

Tổng dãy \(\left(1+2+3+...+100\right)\) là: \(\left(1+100\right).100:2=5050\) 

\(\Rightarrow100.x+5050=5750\) 

                \(100.x=5750-5050\) 

                \(100.x=700\) 

                       \(x=700:100\)  

                       \(x=7\) 

\(x+x:0,5+x:0,25+x:0,125=150\) 

                         \(x.\left(1+2+4+8\right)=150\)  

                                              \(x.15=150\) 

                                                   \(x=150:15\) 

                                                   \(x=10\) 

Chúc bạn học tốt!

a: S=1(1+1)+2(1+2)+...+100(1+100)

=1+2+...+100+1^2+2^2+...+100^2

\(=\dfrac{100\cdot102}{2}+\dfrac{100\cdot\left(100+1\right)\cdot\left(2\cdot100+1\right)}{6}\)

\(=100\cdot51+\dfrac{100\cdot101\cdot201}{6}\)

=343450

b: \(A=1\cdot2\cdot3+2\cdot3\cdot4+...+100\cdot101\cdot102\)

=>\(4\cdot A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+...+100\cdot101\cdot102\left(103-99\right)\)

=>4*A=100*101*102*103

=>A=25*101*102*103

 

20 tháng 1 2022

giúp mik nhé cám ơn

a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555

=> 101x +5050 = 5555

=> 101x = 505

=> x = 505 : 101 = 5

Vậy, x = 5

b)1+2+3+4+...+x=820

=> ( x+1) x :2 = 820

=> (x+1)x = 1640

Mà 1640 = 40 . 41

=> x = 40 ( vì {x+1} - x = 1)

Vậy, x = 40

c) 3x+1 = 9.27=243

=> 3x+1 = 35

=>x + 1 = 5

=> x = 4

Vậy, x=4

d) x+2x+3x+...+99x+100x=15150

=> [( 100 + 1) x 100 :2 ] x = 15150

=> 5050x = 15150

=> x = 15150:5050 = 3

Vậy, x =3

e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550

=> 100x + 5050 = 205550

=> 100x =  205550 - 5050= 200500

=> x =  200500 : 100 = 2005

Vậy, x = 2005

f)3x+3x+1+3x+2=351

=> 3x + 3x . 3 + 3x x 9 = 351

=> 3x ( 1+3+9) = 351

=> 3x  . 13 = 351

=> 3 = 351 :13=27 mà 27 = 33

=> x=3

Vậy, x=3

23 tháng 7 2023

mình đg cần gấp á

 

19 tháng 8 2017

      A=100/1 x 2 + 100/2 x 3 + 100/3 x 4 +...+100/99 x 100

A/100=1/1 x 2 + 1/2 x 3 + 1/3 x 4 +...+1/99 x 100

A/100=2-1/1x2 + 3-2/2x3 + ... + 100-99/99x100

A/100=1-1/2 + 1/2-1/3+...+1/99-1/100

A/100=1-1/100

A/100=99/100

A=99/100x100=99

Vậy A=99.

19 tháng 8 2017

Ta có:

\(\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+...+\frac{100}{99.100}\)

\(\Rightarrow100.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow100.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow100.\left(\frac{1}{1}-\frac{1}{100}\right)\Leftrightarrow100.\frac{99}{100}=99\)

10 tháng 7 2017

A.   \(\left(x+1\right)+\left(x+2\right)+......+\left(x+100\right)=5750\)

      \(x+1+x+2+....+x+100=5750\)

      \(100x+\left(1+2+3+.......+100\right)=5750\)

      \(100x+5050=5750\)

\(100x=700\)

\(x=700:100=7\)

B.   x+(1+2+......+100) = 2000

       x + 5050 = 2000

            x = 2000 - 5050

           x= -3050

C.   ( x-1 )+(x-2)+......+( x - 100 ) = 50

 x-1+x-2+.........+x-100 = 50

100x + ( -1-2-........-100  ) = 50

100x + ( - 5050 ) = 50

100x = 50 + 5050

100 x = 5100

x = 5100 : 100

x = 51

11 tháng 7 2017

A . \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)

\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)

\(100x+5050=5750\)

\(100x=5750-5050\)

\(100x=700\)

\(\Rightarrow x=\frac{700}{100}=7\)

B. \(x+\left(1+2+3+4+5+....+100\right)=2000\)

 \(x+\frac{\left(100+1\right).100}{2}=2000\)

\(x+5050=2000\)

\(\Rightarrow x=2000-5050=-3050\)

C. \(\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+....+\left(x-100\right)=50\)

\(\left(x+x+x+...+x\right)-\left(1+2+3+...+100\right)=50\)

\(100x-5050=50\)

\(100x=5100\)

\(\Rightarrow x=\frac{5100}{100}=51\)