tìm 2 số tự nhiên sao cho tổng và tích của chúng cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
3. => 1 trong 2 số phải là 1(tích của 2 số tự nhiên khác 1 là hợp số)
=> số thứ 2 là 2
Tích của hai số tự nhiên là số nguyên tố nên một số là 1 , số còn lại kớ hiệu là a là số nguyên tố
Theo đề bài 1 + a củng là số nguyên tố. Xét hai trường hợp:
- Nếu 1 + a là số lẽ thì a là số chẵn. Do a là số nguyên tố nên a =2
- Nếu 1 + a la số chẵn thì 1 + a = 2 Vì 1 + a là số nguyên tụ . Khi đó a= 1 không là số nguyên tố ( loại )
Vậy hai số tự nhiên phải Tìm 1 và 2
Tích 2 số là số nguyên tố
=> Một số phải bằng 1 (vì cả hai số khác 1 thì tích là hợp số)
=> Số thứ hai là số nguyên tố
Số 1 mà cộng với một số nguyên tố ra số nguyên tố
=> Số đó là số 2 (vì nếu số thứ hai cũng là số nguyên tố lớn hơn 2 công 1 ra số chẵn)
Vậy 2 số đó là 1 & 2
Tích 2 số là số nguyên tố
=> Một số phải bằng 1 (vì cả hai số khác 1 thì tích là hợp số)
=> Số thứ hai là số nguyên tố
Số 1 mà cộng với một số nguyên tố ra số nguyên tố
=> Số đó là số 2 (vì nếu số thứ hai cũng là số nguyên tố lớn hơn 2 công 1 ra số chẵn)
Vậy 2 số đó là 1 & 2
a) Gọi 2 số đó là : a ; b \(\left(a;b\inℕ^∗\right)\)
Theo bài ra ta có :
\(a+b=162\)( 1 )
\(ƯCLN\left(a,b\right)=18\)( 2 )
\(a=18x;b=18y\left(\left(x,y\right)=1\right)\)( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) suy ra :
\(18x+18y=162\)
\(\Rightarrow18.\left(x+y\right)=162\)
\(\Rightarrow x+y=162:18=9\)
Vì \(\left(x,y\right)=1\)nên :
\(x+y\in\left\{\left(4+5\right);\left(5+4\right);\left(1+8\right);\left(8+1\right);\left(7+2\right);\left(2+7\right)\right\}\)
Vậy \(\left(a;b\right)\in\left\{\left(72;90\right),\left(90;72\right),\left(18;162\right),\left(162;18\right),\left(126;36\right),\left(36;126\right)\right\}\)
b) Nếu \(p=3\Rightarrow p+2=5;p+4=7\)( chọn )
Nếu \(p\)chia cho 3 dư 1 \(\Rightarrow p+2⋮3\)( loại )
Nếu \(p\)chia cho 3 dư 2 \(\Rightarrow p+4⋮3\)( loại )
Vậy \(p=3\)
a) theo cách làm của bạn trên
b) Nếu P=3=> p> p+2=5 ; p+4+7 9 (chọn) Nếu p chia cho 3 dư 1 => p+2 chia hết cho 3; Nếu p chia 3 dư 2=> p+4 chia hết cho 3. Vậy p=3 là hợp lý nhất.
Gọi hai số đó là a; b
+) a.b là số nguyên tố => 1 trong hai số bằng 1; số còn lại là số nguyên tổ. Coi a = 1 ; b là số nguyên tố
+) a+ b = 1 + b là số nguyên tố => b chẵn => b = 2
Vậy hai số đó là 1; 2
Kí hiệu hai số cần tìm là a và b. Ta thấy
a . b có ít nhất 4 ước là :
- 1; a; b và chính nó.
=> Tích hai số ko thể là số nguyên tố.
=> Không tìm được hai số tự nhiên thoả mãn yêu cầu đề bài.