K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

đúng rùi đó Nguyễn Văn Tân

1 tháng 11 2015

rồi đó

NM
10 tháng 10 2021

ta có:

undefined

14 tháng 10 2015

rất tiếc em mới học lớp 6

20 tháng 1 2022

dhgxkkkkkkkkkkkkkkkkkkkkk

20 tháng 1 2022

jnymrjd,5

NV
12 tháng 12 2020

\(A=\dfrac{3x^2-2xy}{x^2+2xy+y^2}=\dfrac{15x^2-10xy}{5\left(x^2+2xy+y^2\right)}=\dfrac{-\left(x^2+2xy+y^2\right)+16x^2-8xy+y^2}{5\left(x^2+2xy+y^2\right)}\)

\(A=-\dfrac{1}{5}+\dfrac{\left(4x-y\right)^2}{5\left(x+y\right)^2}\ge-\dfrac{1}{5}\)

\(A_{min}=-\dfrac{1}{5}\) khi \(4x-y=0\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)