\(\left\{2\left[56+22-3\left(7+1\right)-2\right]-3\right\}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
`-3^2 + {-54 \div [-2^8 + 7] * (-2)^2}`
`= -9 + [-54 \div (-256 + 7) * 4]`
`= -9 + [-54 \div (-249) * 4]`
`= -9 + (18/83 * 4)`
`= -9 + 72/83`
`= -675/83`
______
`31 * (-18) + 31 * (-81) - 31`
`= 31 * (-18 - 81 - 1)`
`= 31 * (-100)`
`= -3100`
___
`(-12) * 47 + (-12) * 52 + (-12)`
`= (-12) * (47 + 52 + 1)`
`= (-12) * 100`
`= -1200`
___
`13 * (23 + 22) - 3 * (17 + 28)`
`= 13 * 45 - 3 * 45`
`= 45 * (13 - 3)`
`= 45 * 10`
`= 450`
____
`-48 + 48 * (-78) + 48 * (-21)`
`= 48 * (-1 - 78 - 21)`
`= 48 * (-100)`
`= -4800`
a: \(y'< 0\)
=>\(\left(x-3\right)^3\cdot\left(x-1\right)^{22}\cdot\left(-3x-6\right)^7< 0\)
=>\(\left(x-3\right)\left(-3x-6\right)< 0\)
=>\(\left(x+2\right)\left(x-3\right)>0\)
=>\(\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)
y'>0
=>\(\left(x+2\right)\left(x-3\right)< 0\)
=>\(-2< x< 3\)
y'=0
=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\\-3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Ta có bảng xét dấu sau:
x | \(-\infty\) -2 1 3 +\(\infty\) |
y' | - 0 + 0 + 0 - |
Vậy: Hàm số đồng biến trên các khoảng \(\left(-2;1\right);\left(1;3\right)\)
Hàm số nghịch biến trên các khoảng \(\left(-\infty;-2\right);\left(3;+\infty\right)\)
b: y'<0
=>\(\left(4x-3\right)^3\cdot\left(x^2-1\right)^{21}\left(3x-9\right)^7< 0\)
=>\(\left(4x-3\right)\left(3x-9\right)\left(x^2-1\right)< 0\)
=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)< 0\)
TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{3}{4}\)
TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)
y'>0
=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)>0\)
TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\-1< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{3}{4}< x< 1\)
Ta sẽ có bảng xét dấu sau đây:
x | \(-\infty\) -1 3/4 1 3 +\(\infty\) |
y' | + 0 - 0 + 0 - 0 + |
Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;-1\right);\left(\dfrac{3}{4};1\right);\left(3;+\infty\right)\)
Hàm số nghịch biến trên các khoảng \(\left(-1;\dfrac{3}{4}\right);\left(1;3\right)\)
A = - 522 - { - 222 - [ - 122 - (100 - 522) + 2022] }
A = - 522 - { -222 - [- 122 - 100 + 522 ] + 2022}
A = - 522 - { -222 - { - 222 + 522 } + 2022}
A = - 522 - {- 222 + 222 - 522 + 2022}
A = -522 + 522 - 2022
A = - 2022
B = 1 + \(\dfrac{1}{2}\)(1 + 2) + \(\dfrac{1}{3}\).(1 + 2 + 3) + ... + \(\dfrac{1}{20}\).(1 + 2+ 3 + ... + 20)
B = 1+\(\dfrac{1}{2}\)\(\times\)(1+2)\(\times\)[(2-1):1+1]:2+ ... + \(\dfrac{1}{20}\)\(\times\) (20 + 1)\(\times\)[(20-1):1+1]:2
B = 1 + \(\dfrac{1}{2}\) \(\times\) 3 \(\times\) 2:2 + \(\dfrac{1}{3}\) \(\times\)4 \(\times\) 3 : 2+....+ \(\dfrac{1}{20}\) \(\times\)21 \(\times\) 20 : 2
B = 1 + \(\dfrac{3}{2}\) + \(\dfrac{4}{2}\) + ....+ \(\dfrac{21}{2}\)
B = \(\dfrac{2+3+4+...+21}{2}\)
B = \(\dfrac{\left(21+2\right)\left[\left(21-2\right):1+1\right]:2}{2}\)
B = \(\dfrac{23\times20:2}{2}\)
B = \(\dfrac{23\times10}{2}\)
B = 23
X\(\Leftrightarrow-96x^2+505x+396=0\)ét vế trái : \(\frac{\left(4x+7\right)^2}{7}-\frac{\left(5x-1\right)^2}{7}=\frac{\left(4x+7-5x+1\right)\left(4x+7+5x-1\right)}{7}=\frac{\left(8-x\right)\left(9x+6\right)}{7}\)
pt <=> \(\frac{\left(8-x\right)\left(9x+6\right)}{7}=\frac{\left(8x-3\right)\left(3x+4\right)}{56}\)
\(\Leftrightarrow24\left(8-x\right)\left(3x+2\right)-\left(8x-3\right)\left(3x+4\right)=0\)
\(\Leftrightarrow-96x^2+505x+396=0\)
Giải phương trình trên được : \(x_1=\frac{505}{192}-\frac{\sqrt{407089}}{192}\); \(x_2=\frac{505}{192}+\frac{\sqrt{407089}}{192}\)
Vậy ..............................
a. \(\left(\frac{2}{3}\right)^3-\left(\frac{3}{4}\right)^2.\left(-1\right)^5=\frac{8}{27}-\frac{9}{16}.\left(-1\right)=\frac{8}{27}+\frac{9}{16}=\frac{371}{432}\)
b. \(12:\left(\frac{3}{4}-\frac{5}{6}\right)^2=12:\left(-\frac{1}{12}\right)^2=12:\frac{1}{144}=12.144=1728\)
c. \(\frac{7}{22}:\frac{3}{11}+\frac{7}{22}:\frac{4}{11}=\frac{7}{22}.\frac{11}{3}+\frac{7}{22}.\frac{11}{4}=\frac{7}{22}\left(\frac{11}{3}+\frac{11}{4}\right)\)
\(=\frac{7}{22}.\frac{77}{12}=\frac{49}{24}\)
d. \(\frac{12}{35}\left(\frac{7}{4}+\frac{13}{4}\right)-\frac{1}{3}=\frac{12}{35}.5-\frac{1}{3}=\frac{12}{7}-\frac{1}{3}=\frac{29}{21}\)
\(\left\{2\left[56+22-3\left(7+1\right)-2\right]-3\right\}\)
\(=\left\{2\left[56+22-3.8-2\right]-3\right\}\)
\(=\left\{2\left[56+22-24-2\right]-3\right\}\)
\(=\left\{2.52-3\right\}\)
\(=\left\{104-3\right\}\)
\(=101\)
=\(\left\{2\left[78-24-2\right]-3\right\}\)
=\(2\cdot50-3\)
= \(97\)