(2x - 1)( y - 3 ) =29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)\left(y-3\right)=29\)
\(\Rightarrow\orbr{\begin{cases}2x-1=29\\y-3=29\end{cases}\Rightarrow\orbr{\begin{cases}2x=30\\y=32\end{cases}\Rightarrow}\orbr{\begin{cases}x=15\\y=32\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=15\\y=32\end{cases}}\)
\(=>\)\(\orbr{\begin{cases}2x-1=0\\y-3=0\end{cases}}\)\(=>\)\(\orbr{\begin{cases}x=\frac{1}{2}\\y=3\end{cases}}\)
VẬY \(x=\frac{1}{2}\)HOẶC \(y=3\). Hok tốt!!!
Theo bài ra, ta có:
(2x - 1)(y - 3) = 29 (1)
=> 29 chia hết cho 2x - 1
=> 2x - 1\(\in\)Ư(29)
=> 2x - 1\(\in\){1; 29} (2)
Từ (1) và (2), ta có bảng:
2x-1 | 1 | 29 |
2x | 2 | 30 |
x | 1 | 15 |
y-3 | 29 | 1 |
y | 32 | 4 |
Vậy (x; y)\(\in\){(1; 32); (15; 4)}
Vì x;y là số tự nhiên => 2x-1 và y-3 là số nguyên
=> 2x -1 ; y-3 thuộc Ư(29)
Ta có bảng
2x-1 | -29 | -1 | 1 | 29 |
y-3 | -1 | -29 | 29 | 1 |
x | -14 | 0 | 1 | 15 |
y | 2 | -26 | 4 | 18 |
Vì x;y là số tự nhiên => x=1 ; y=4 hoặc x=15;y=18
Vậy.......................
Vì x;y là số tự nhiên => 2x-1 và y-3 là số nguyên
=> 2x -1 ; y-3 thuộc Ư(29)
Ta có bảng
2x-1 | -29 | -1 | 1 | 29 |
y-3 | -1 | -29 | 29 | 1 |
x | -14 | 0 | 1 | 15 |
y | 2 | -26 | 4 | 18 |
Vì x;y là số tự nhiên => x=1 ; y=4 hoặc x=15;y=18
Vậy.......................
Vì x;y là số tụ nhiên => 2x-1 và y-3 là số nguyên
=> 2x-1 ; y-3 \(\in\)Ư( 29)
ta có bảng :
2x-1 | -29 | -1 | 1 | 29 |
y-3 | -1 | -29 | 29 | 1 |
x | -14 | 0 | 1 | 15 |
y | 2 | -26 | 4 | 18 |
Vì x;y là số tự nhiên => x=1 ; y=4 hoặc x=15;y=18
Vậy...........................................................................
( 2x - 1 ) ( y - 3 ) = 29
=> (2x - 1) ; (y - 3) là ước của 29
ta có bảng
2x - 1 | -29 | -1 | 1 | 29 |
y - 3 | -1 | -29 | 29 | 1 |
x | -14 | 0 | 1 | 15 |
y | 2 | -26 | 32 | 4 |
Vậy ...
\(\left(2x-1\right)\left(y-3\right)=29\)
\(\Rightarrow\left(2x-1\right)\left(y-3\right)\inƯ\left(29\right)\in\left\{\pm1;\pm29\right\}\)
+ Xét \(\hept{\begin{cases}2x-1=-1\\2x-1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}\)
+ Xét \(\hept{\begin{cases}2x-1=29\\2x-1=-29\end{cases}}\Rightarrow\hept{\begin{cases}x=15\\x=\frac{-27}{2}\end{cases}=-14}\)
+ Xét \(\hept{\begin{cases}y-3=1\\y-3=-1\end{cases}\Rightarrow}\hept{\begin{cases}y=4\\y=2\end{cases}}\)
+ Xét \(\hept{\begin{cases}y-3=29\\y-3=-29\end{cases}}\Rightarrow\hept{\begin{cases}y=32\\y=-26\end{cases}}\)
Kết luận : .....
1) \(\left(x+1\right)^2=x^2+2x+1\)
2) \(\left(2x+1\right)^2=4x^2+4x+1\)
3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
4) \(\left(2x+3\right)^2=4x^2+12x+9\)
5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)
6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)
7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)
8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)
9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)
10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
Tìm x và y giúp mk nhé
(2x - 1)( y - 3 ) =29
(2x - 1)=29 va ( y - 3 ) =29
(2x - 1)=29 va ( y - 3 ) =29
2x=29+1 y=29+3
2x=30 y=32
x=30:2
x=15