K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

\(n+15⋮n-3\)

\(\rightarrow n-3+18⋮n-3\)

\(\left(n-3\right)+18⋮n-3\)

Vì \(n-3⋮n-3\)

Nên \(18⋮n-3\)

Hay \(n-3\inƯ\left(18\right)\)

\(\rightarrow n-3\in\left\{1;2;3;6;8;9;18\right\}\)

\(\Rightarrow n=\left\{4;5;6;9;11;12;21\right\}\)

Mình làm \(x\in N\)nha

Chúc học tốt

23 tháng 10 2017

n^2 + n + 1 = n( n + 1 ) + 1

n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ . 

Mà số lẻ thì không chia hết cho 2 . 

=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2 

=> n( n + 11 ) + 1 cũng không chia hết cho 4 

Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6 

=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7 

Vậy n( n + 1 ) + 1 không chia hết cho 5 

2 tháng 12 2017

n^2 + n + 1 = n( n + 1 ) + 1

n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ . 

Mà số lẻ thì không chia hết cho 2 . 

=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2 

=> n( n + 11 ) + 1 cũng không chia hết cho 4 

Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6 

=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7 

Vậy n( n + 1 ) + 1 không chia hết cho 5 

22 tháng 11 2019

+ Nếu n chia hết cho 3 thì tích chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3

+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3

=> tích chia hết cho 3 với mọi n

27 tháng 2 2016

(4n-5)/(n-3)= (4(n-3)+7)/(n-3)=4+7/(n-3) 
để 4n-5 chia hết cho n-3 thì kết quả của phép chia này phải là số nguyên=> 7/(n-3) phải là số nguyên. 
7/(n-3) là số nguyên khi n-3 thuộc Ư(7).Mà Ư(7)=(-1;1;-7;7) 
=> 
TH1:n-3=-1=>n=-1+3=2 
TH2:n-3=1=>n=1+3=4 
TH3:n-3=-7=>n=-7+3=-4 
TH4:n-3=7=>n=7+3=10 
Vậy để 4n-5 chia hết cho n-3 thì n thuộc {2;4;-4;10)

27 tháng 2 2016

4n-5 chia hết cho n-3

4n-12+17 chia hết cho n-3

4(n-3)+17 chia hết cho n-3

=>17 chia hết cho n-3 hay (n-3)EƯ(17)={1;-1;17;-17}

=>nE{4;2;20;-14}

28 tháng 2 2016

Ta có : 4n - 5 chia hết cho n - 3

=> 4n - 12 + 17 chia hết cho n - 3

=> 4(n-3) + 17 chia hết cho n - 3

=> 17 chia hết cho n - 3

=> n - 3 \(\in\) Ư(17) = {+1;+17}

Với n - 3 = 1 => n = 4

Với n - 3 = -1 =. n = 2

Với n - 3 = 17 => n = 20

Với n - 3 = -17 => n = -14

Vậy n \(\in\) {4;2;20;-14}

11 tháng 11 2021

\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)

\(\Leftrightarrow-n^3+n⋮n^3+1\)

\(\Leftrightarrow n=1\)

a,n-3 chia hết n+3

có n-3 chia hết n+3

<=> n+3-6chia hết n+3

vì n+3 chia hết n+3 nên 6 chia hết n+3

=>n+3 thuộc ước 6 ={1;2;3;6}

=> n = 4;5;6;9

1 tháng 7 2016

\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\\ \)

  • Nếu n chia hết cho 5 thì A chia hết cho 5
  • Nếu n chia 5 dư 1 thì (n-1) chia hết cho 5 => A chia hết cho 5
  • Nếu n chia 5 dư 2 thì n = 5k +2 => n2 + 1 = 25k2 + 20k + 4 + 1 chia hết cho 5 => A chia hết cho 5
  • Nếu n chia 5 dư 3 thì n = 5k +3 => n2 + 1 = 25k2 + 30k + 9 + 1 chia hết cho 5 => A chia hết cho 5
  • Nếu n chia 5 dư 4 thì (n+1) chia hết cho 5 => A chia hết cho 5

n thuộc N lớn hơn hoặc bằng 2 chỉ có 5 trường hợp có số dư như trên khi chia cho 5. Nên A chia hết cho 5 với mọi n thuộc N lớn hơn hoặc bằng 2.